Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Ondřej Turek"'
Publikováno v:
Quantum, Vol 7, p 911 (2023)
The problem of computing the local hidden variable (LHV) value of a Bell inequality plays a central role in the study of quantum nonlocality. In particular, this problem is the first step towards characterizing the LHV polytope of a given scenario. I
Externí odkaz:
https://doaj.org/article/0c1f3107cfc44af0b120933db300b211
Publikováno v:
Mathematics, Vol 9, Iss 12, p 1432 (2021)
In this paper, we study estimates for quadratic forms of the type xTA−mx, m∈N, for symmetric matrices. We derive a general approach for estimating this type of quadratic form and we present some upper bounds for the corresponding absolute error.
Externí odkaz:
https://doaj.org/article/33f1a55f3829495f93dfd7d1759ea8cc
Publikováno v:
Acta Polytechnica, Vol 53, Iss 5 (2013)
We study a family of closed quantum graphs described by one singular vertex of order n = 4. By suitable choice of the parameters specifying the singular vertex, we can construct a closed path in the parameter space that physically corresponds to the
Externí odkaz:
https://doaj.org/article/868668a3deea4666a3ec8947c4fe9dd9
Publikováno v:
Communications in Statistics - Simulation and Computation. 51:1542-1563
The solution of the penalized least squares problems depends on a tuning parameter. A popular tool for specifying the tuning parameter is the generalized cross-validation (GCV). In this work, we ut...
Publikováno v:
Communications in Mathematics, Vol 29, Iss 1, Pp 15-34 (2021)
It is known that a real symmetric circulant matrix with diagonal entries $d\geq0$, off-diagonal entries $\pm1$ and orthogonal rows exists only of order $2d+2$ (and trivially of order $1$) [Turek and Goyeneche 2019]. In this paper we consider a comple
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e9ac616178b60f1f895613d8c30b5bff
https://doi.org/10.2478/cm-2021-0005
https://doi.org/10.2478/cm-2021-0005
The problem of computing the local hidden variable (LHV) value of a Bell inequality plays a central role in the study of quantum nonlocality. In particular, this problem is the first step towards characterizing the LHV polytope of a given scenario. I
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a7782c39c7f944177058430c233b075b
Publikováno v:
Mathematics, Vol 9, Iss 1432, p 1432 (2021)
Mathematics
Volume 9
Issue 12
Mathematics
Volume 9
Issue 12
In this paper, we study estimates for quadratic forms of the type xTA−mx, m∈N, for symmetric matrices. We derive a general approach for estimating this type of quadratic form and we present some upper bounds for the corresponding absolute error.
Publikováno v:
Journal of Computational and Applied Mathematics. 373:112416
The specification of accurate ridge estimates in penalized regression models strongly depends on the appropriate choice of the tuning parameter which monitors the regularization process. In this work, we propose the selection of this parameter via th
Autor:
Ondřej Turek, Jaroslav Hančl
The paper deals with best one--sided (lower or upper) Diophantine approximations of the $\ell$-th kind ($\ell\in\mathbb{N}$). We use the ordinary continued fraction expansions to formulate explicit criteria for a fraction $\frac{p}{q}\in\mathbb{Q}$ t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ec11e58fb72972426a3419b93cf4d0fd
Autor:
Ondřej Turek
We locate gaps in the spectrum of a Hamiltonian on a periodic cuboidal (and generally hyperrectangular) lattice graph with $\delta$ couplings in the vertices. We formulate sufficient conditions under which the number of gaps is finite. As the main re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6cab1d4463a7ba230c942d3524f193fa