Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Ondřej F. K. Kalenda"'
Publikováno v:
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, American Mathematical Society, 2021, 374 (2), pp.1327-1350. ⟨10.1090/tran/8227⟩
Transactions of the American Mathematical Society, American Mathematical Society, 2021, 374 (2), pp.1327-1350. ⟨10.1090/tran/8227⟩
We prove that, given a constant $K> 2$ and a bounded linear operator $T$ from a JB$^*$-triple $E$ into a complex Hilbert space $H$, there exists a norm-one functional $\psi\in E^*$ satisfying $$\|T(x)\| \leq K \, \|T\| \, \|x\|_{\psi},$$ for all $x\i
Publikováno v:
Digibug. Repositorio Institucional de la Universidad de Granada
instname
instname
A. M. Peralta was partially supported by the Spanish Ministry of Science, Innovation and Universities (MICINN) and European Regional Development Fund project no. PGC2018-093332-B-I00, the IMAG -Maria de Maeztu grant CEX2020-001105-M/AEI/10.13039/5011
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::32482495c04621a2ab00d8753b4bb543
http://hdl.handle.net/10481/71999
http://hdl.handle.net/10481/71999
Autor:
Ondřej F. K. Kalenda, Jan Hamhalter
Publikováno v:
Mathematische Zeitschrift. 292:453-471
We show that in the space of nuclear operators from $\ell^q(\Lambda)$ to $\ell^p(J)$ the two natural ways of measuring weak non-compactness coincide. We also provide explicit formulas for these measures. As a consequence the same is proved for predua
Publikováno v:
Journal of Functional Analysis
Journal of Functional Analysis, Elsevier, 2020, 278 (1), pp.108300. ⟨10.1016/j.jfa.2019.108300⟩
Journal of Functional Analysis, Elsevier, 2020, 278 (1), pp.108300. ⟨10.1016/j.jfa.2019.108300⟩
We prove, among other results, that three standard measures of weak non-compactness coincide in preduals of JBW$^*$-triples. This result is new even for preduals of von Neumann algebras. We further provide a characterization of JBW$^*$-triples with s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c74fbbcaa6b37f8f4bc0e4a6e856661c
https://hal.archives-ouvertes.fr/hal-03491837
https://hal.archives-ouvertes.fr/hal-03491837
Autor:
Ondřej F. K. Kalenda, Vojtěch Kovařík
Publikováno v:
Topology and its Applications. 233:44-51
We prove that hereditarily Lindelof space which is F σ δ in some compactification is absolutely F σ δ . In particular, this implies that any separable Banach space is absolutely F σ δ when equipped with the weak topology.
Autor:
Ondřej F. K. Kalenda
Publikováno v:
Commentationes Mathematicae Universitatis Carolinae. 58:173-182
We provide an alternative proof of the theorem saying that any Va\v{s}\'ak (or, weakly countably determined) Banach space admits a full $1$-projectional skeleton. The proof is done with the use of the method of elementary submodels and is comparably
For measuring families of curves, or, more generally, of measures, M p -modulus is traditionally used. More recent studies use so-called plans on measures. In their fundamental paper [6] , Ambrosio, Di Marino and Savare proved that these two approach
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9b6a301ddd5a4dd97dc52dbf243b9a84
http://arxiv.org/abs/1904.04527
http://arxiv.org/abs/1904.04527
We prove that every surjective isometry from the unit sphere of a rank-2 Cartan factor C onto the unit sphere of a real Banach space Y, admits an extension to a surjective real linear isometry from C onto Y. The conclusion also covers the case in whi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::024ad2bc981ad5a616669161c0ed2ef7
We study two natural preorders on the set of tripotents in a JB$^*$-triple defined in terms of their Peirce decomposition and weaker than the standard partial order. We further introduce and investigate the notion of finiteness for tripotents in JBW$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9c6cbedaf9f8716c1c18fedfa390cb55
Publikováno v:
Quarterly Journal of Mathematics
Quarterly Journal of Mathematics, Oxford University Press (OUP), 2018, 69 (2), pp.655-680. ⟨10.1093/qmath/hax057⟩
Quarterly Journal of Mathematics, Oxford University Press (OUP), 2018, 69 (2), pp.655-680. ⟨10.1093/qmath/hax057⟩
We prove that the predual, $M_*$, of a JBW$^*$-triple $M$ is a 1-Plichko space (i.e. it admits a countably 1-norming Markushevich basis or, equivalently, it has a commutative 1-projectional skeleton), and obtain a natural description of the $\Sigma$-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b118a60432e33ba8abc48ee859e0ae51
https://hal.archives-ouvertes.fr/hal-03491836
https://hal.archives-ouvertes.fr/hal-03491836