Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Omer Offen"'
Autor:
Erez Lapid, Omer Offen
Publikováno v:
International Mathematics Research Notices. 2022:14255-14294
We provide a Plancherel decomposition for the space of symplectic bilinear forms of rank $2n$ over a local non-archimedean field $F$ in terms of that of $GL_n(F)$.
Comment: with an appendix by Dmitry Gourevitch
Comment: with an appendix by Dmitry Gourevitch
Autor:
Omer Offen
Publikováno v:
Mathematische Zeitschrift. 294:1521-1552
We study representations of the general and the special linear groups over a non-archimedean local field that admit a non-zero invariant linear form with respect to the symplectic group (henceforth distinguished representations). For the class of lad
Autor:
Omer Offen, Arnab Mitra
Publikováno v:
Journal of the Institute of Mathematics of Jussieu. 20:225-276
We study$\text{Sp}_{2n}(F)$-distinction for representations of the quasi-split unitary group$U_{2n}(E/F)$in$2n$variables with respect to a quadratic extension$E/F$of$p$-adic fields. A conjecture of Dijols and Prasad predicts that no tempered represen
Autor:
Omer Offen, Eitan Sayag
Publikováno v:
The Ramanujan Journal. 49:545-553
We show existence, uniqueness and disjointness of Klyachko periods for certain induced representations associated by Zelevinsky to every irreducible representation of a general linear group over a non-archimedean local field. As a consequence, for ev
Autor:
Omer Offen
Publikováno v:
Journal of Number Theory. 170:211-227
We provide some tools to study distinguished induced representations in the setting of a general p-adic symmetric space.
Autor:
Omer Offen, Arnab Mitra
Publikováno v:
Comptes Rendus Mathematique. 355:15-19
We show that, for a quadratic extension of p-adic fields, no cuspidal representation of the quasi-split unitary group admits a non-trivial linear form invariant by the symplectic subgroup. Our proof is purely local.
Autor:
Omer Offen, Maxim Gurevich
Publikováno v:
Journal of Functional Analysis. 270:4478-4512
Let $G$ be a reductive group and $\theta$ an involution on $G$, both defined over a $p$-adic field. We provide a criterion for $G^\theta$-integrability of matrix coefficients of representations of $G$ in terms of their exponents along $\theta$-stable
Autor:
Erez Lapid, Omer Offen
Publikováno v:
Kyoto Journal of Mathematics. 58
Given a reductive group G and a reductive subgroup H, both defined over a number field F, we introduce the notion of the H-distinguished automorphic spectrum of G and analyze it for the pairs (GL2n,Spn) and (Sp2n,Spn×Spn). In the first case we give
Autor:
Omer Offen
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783319952307
Let F be a non-archimedean local field, \( \underline {G}\) a connected reductive group defined over F and \(G= \underline {G}(F)\).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7e59a6c2f5dab127d48471f5cee81b9a
https://doi.org/10.1007/978-3-319-95231-4_3
https://doi.org/10.1007/978-3-319-95231-4_3
Autor:
Jeffrey Hakim, Omer Offen
Publikováno v:
Manuscripta Mathematica. 148:1-27
These notes establish a local converse theorem for irreducible, distinguished, supercuspidal representations of GL(n) relative to GL(n −2) twists. Our methods may also be used to give an entirely new proof of the local converse theorem of Chen, Cog