Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Omar Tout"'
Autor:
Omar Tout
Publikováno v:
Discrete Mathematics Letters, Vol 13, Pp 95-99 (2024)
Externí odkaz:
https://doaj.org/article/d0881eac1e0f4353beedc8bd6c5e8d68
Autor:
Omar Tout
Publikováno v:
Discrete Mathematics Letters, Vol 10, Pp 35-40 (2022)
Externí odkaz:
https://doaj.org/article/6061f400cae343ccada406b939e02b40
Autor:
Omar Tout
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AS,..., Iss Proceedings (2013)
The Hecke algebra of the pair $(\mathcal{S}_{2n}, \mathcal{B}_n)$, where $\mathcal{B}_n$ is the hyperoctahedral subgroup of $\mathcal{S}_{2n}$, was introduced by James in 1961. It is a natural analogue of the center of the symmetric group algebra. In
Externí odkaz:
https://doaj.org/article/bf952a38145f4356a4883ab56b0075c0
Autor:
Rayane Abou-Nasser Al-Yafi, Omar Tout
Publikováno v:
Advances and Applications in Discrete Mathematics. 21:31-52
Autor:
Omar Tout
Publikováno v:
Journal of Algebra Combinatorics Discrete Structures and Applications, Vol 6, Iss 2 (2019)
We use the combinatorial way to give an explicit expression for the product of the class of cycles of length three with an arbitrary class of cycles. In addition, an explicit formula for the coefficient of an arbitrary class in the expansion of the p
Autor:
Omar Tout
It is well known that the pair $(\mathcal{S}_n,\mathcal{S}_{n-1})$ is a Gelfand pair where $\mathcal{S}_n$ is the symmetric group on $n$ elements. In this paper, we prove that if $G$ is a finite group then $(G\wr \mathcal{S}_n, G\wr \mathcal{S}_{n-1}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::edf9ef24e887e759b68932375b1b99c1
Autor:
Omar Tout
Publikováno v:
Communications in Algebra. 45:4944-4959
After a careful consideration of some of the well known properties of irreducible characters of finite groups to zonal spherical functions of Gelfand pairs, we were able to deduce a Frobenius formula for Gelfand pairs. For a given Gelfand pair, the s
Autor:
Omar Tout
We generalize the concept of partial permutations of Ivanov and Kerov and introducek-partial permutations. This allows us to show that the structure coefficients of the center of the wreath product$${\mathcal {S}}_k\wr {\mathcal {S}}_n$$Sk≀Snalgebr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::40a416e708525bafa4734183c4bc92f1
http://arxiv.org/abs/1902.02124
http://arxiv.org/abs/1902.02124
Autor:
Omar Tout
Publikováno v:
Journal of Algebra and Its Applications. 20:2150085
We show that the [Formula: see text]-conjugacy classes of [Formula: see text] where [Formula: see text] is the hyperoctahedral group on [Formula: see text] elements, are indexed by marked bipartitions of [Formula: see text] This will lead us to prove
Autor:
Omar Tout
Take a sequence of couples $(G_n,K_n)_n$, where $G_n$ is a group and $K_n$ is a sub-group of $G_n.$ Under some conditions, we are able to give a formula that shows the form of the structure coefficients that appear in the product of double-classes of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::80732dcf82e73bf639bef53bc0d6a02f