Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Omar Sidki"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2015, Iss 197,, Pp 1-15 (2015)
In this article, we study the limit case of some elliptic problems involving nonlinearities having the maximal growth with Dirichlet boundary conditions. We apply a result by Ricceri [12] to prove the existence of multiple nontrivial solutions usi
Externí odkaz:
https://doaj.org/article/506c59ea1bdc40f1be34a2a8d65b4240
Autor:
Mohamed Bahaj, Omar Sidki
Publikováno v:
Electronic Journal of Differential Equations, Vol 2002, Iss 98, Pp 1-11 (2002)
We establish the existence and uniqueness of almost periodic solutions of a class of semilinear equations having analytic semigroups. Our basic tool in this paper is the use of fractional powers of operators.
Externí odkaz:
https://doaj.org/article/39959b423b144261b29f5b9b52de57ec
Autor:
Omar Sidki, Abderrahim El-Attar
Publikováno v:
British Journal of Mathematics & Computer Science. 13:1-11
Publikováno v:
Advances in Pure Mathematics. :713-726
The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.
The aim of this work is to study the existence and uniqueness of a periodic solutions of differential partial functional differential equations with three variable: ∂ ∂x ∂ ∂y ∂ ∂y u(x, y, w) + Au(x, y, w) = f (x, y, w); x, y, w ∈ [0, 2
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::beba8f9dda39560b63d6fd00e130fdaf
https://hal.archives-ouvertes.fr/hal-01635197
https://hal.archives-ouvertes.fr/hal-01635197
In this work, we study the existence of periodic solutions for the following neutral partial functional differential equations of the following form$\frac{d}{dt}[x(t) - L(x_{t})]= A[x(t)- L(x_{t})]+G(x_{t})+f(t)}$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::06f043ef77949adfdc932de5817756f4
https://hal.archives-ouvertes.fr/hal-01556291
https://hal.archives-ouvertes.fr/hal-01556291