Zobrazeno 1 - 10
of 81
pro vyhledávání: '"Omar CHAKRONE"'
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 42 (2024)
In this paper, we study weak solutions to the following Steklov parabolic problem: $$ \begin{cases} u_t - \Delta_p u + \vert u \vert^{p-2} u = 0 \quad \quad \text{ in } ~ \Omega ,~ t>0 , \\ \vert \nabla u \vert^{p-2} \frac{\partial u}{\partial \n
Externí odkaz:
https://doaj.org/article/9373483a798b4967b65e595a1c86b7d9
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 42 (2024)
In this paper, we establish the existence of at least three weak solutions to a problem involving the the fractional p(x, .)- Laplacian operator with weight. Our method used for obtaining the existence of three solutions for a class of Choquard equat
Externí odkaz:
https://doaj.org/article/a38307b721504709b82ae52ac032ee9c
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 41 (2022)
This work deals with the maximum principle for the discrete Neumann or Dirichlet problem -Δφp(Δu(k - 1)) = λm(k)φp(u(k))+ h(k) in [1, n]. We study the existence and nonexistence of positive solution and its uniqueness.
Externí odkaz:
https://doaj.org/article/7a4eb6db27e54f04a5367a211f1af2d6
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 41 (2022)
In this article, we consider the following high-order p-Laplacian neutral differential equation with multiple deviating arguments: $$(\varphi_{p}(x(t)-cx(t-r))^{(m)}(t)))^{(m)}= f(x(t))x'(t)+g(t,x(t),x(t-\tau_{1}(t)),...,x(t-\tau_{k}(t)))+e(t).$$ By
Externí odkaz:
https://doaj.org/article/2b58483060f74a598b8a8abd85e9a968
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 40 (2022)
In this papers we prove the existence of the higher eigencurves for the $p$-laplacian operator with weight, we gives its variational formulation, we study its monotonicity, continuity properties and its asymptotic behavior.
Externí odkaz:
https://doaj.org/article/1997a5d2e36841e1b9d25b1e08a5dedb
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 40 (2022)
We study the existence and non-existence of positive solutions for $(p,q)$-Laplacian Steklov problem with two parameters. The main result of our research is the construction of a continuous curve in plane, which becomes a threshold between the existe
Externí odkaz:
https://doaj.org/article/e51be913a77c43feb21bcdcfc2199617
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 38, Iss 4 (2019)
In the presentp aper, we study the existence and non-existence results of a positive solution for the Steklov eigenvalue problem driven by nonhomogeneous operator $(p,q)$-Laplacian with indefinite weights. We also prove that in the case where $\mu>0$
Externí odkaz:
https://doaj.org/article/adb540470e494d1dae4dfd892064c801
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 34, Iss 1, Pp 65-74 (2016)
In this paper we study the existence of at least two nontrivial solutions for the nonlinear problem p-Laplacian, with nonlinear boundary conditions. We establish that there exist at least two solutions, which are opposite signs. For this reason, we c
Externí odkaz:
https://doaj.org/article/3a40c3f1d28949b49a0199b144ff63bb
Autor:
Mohammed Chehabi, Omar Chakrone
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 36, Iss 2 (2018)
By establishing some results around the first eigenvalue λ1(m) for the following problem: -Δ(φp(Δu(k - 1)))= λm(k)φp(u(k)); k∈ [1; n]; u(0) = 0 = u(n + 1); where m ∈ M([1; n]) = {m : [1; n] → R /∃ k∈ [1; n]; m(k) > 0} ; as the constan
Externí odkaz:
https://doaj.org/article/88fe4055fe714ea19030f92c72f141f4
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 36, Iss 2 (2018)
Using variational methods, we prove in a different cases the existence and multiplicity of $a$-harmonic solutions for the following elleptic problem:\begin{equation*}\begin{gathered}div(a(x, \nabla u))=0, \quad \text{in }\Omega, \\a(x, \nabla u).\nu=
Externí odkaz:
https://doaj.org/article/0d27568b1adc410399f0e5a07d971c54