Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Oluwasanmi Koyejo"'
Publikováno v:
Brain Informatics, Vol 8, Iss 1, Pp 1-15 (2021)
Abstract Here, we combine network neuroscience and machine learning to reveal connections between the brain’s network structure and the emerging network structure of an artificial neural network. Specifically, we train a shallow, feedforward neural
Externí odkaz:
https://doaj.org/article/56535ee1d8f24f75addbbf7d10541b34
Publikováno v:
Algorithms, Vol 15, Iss 7, p 233 (2022)
Distributed machine learning is primarily motivated by the promise of increased computation power for accelerating training and mitigating privacy concerns. Unlike machine learning on a single device, distributed machine learning requires collaborati
Externí odkaz:
https://doaj.org/article/c5ae95dd91bc4423aa51a1cc20a05e4d
Autor:
Timothy N Rubin, Oluwasanmi Koyejo, Krzysztof J Gorgolewski, Michael N Jones, Russell A Poldrack, Tal Yarkoni
Publikováno v:
PLoS Computational Biology, Vol 13, Iss 10, p e1005649 (2017)
A central goal of cognitive neuroscience is to decode human brain activity-that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of d
Externí odkaz:
https://doaj.org/article/ac4fc189672844c7a1a2d4fe4e4d55fd
Autor:
Ayis Pyrros, Jorge Mario Rodríguez-Fernández, Stephen M. Borstelmann, Judy Wawira Gichoya, Jeanne M. Horowitz, Brian Fornelli, Nasir Siddiqui, Yury Velichko, Oluwasanmi Koyejo, William Galanter
Publikováno v:
J Am Coll Radiol
PURPOSE: To assess racial/ethnic and socioeconomic disparities in the difference between atherosclerotic vascular disease prevalence measured by a multi-task convolutional neural network (CNN) deep learning model using frontal chest radiographs (CXRs
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ddebc941903222526fd19dbb2abb1b99
https://europepmc.org/articles/PMC8820271/
https://europepmc.org/articles/PMC8820271/
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Michael Breakspear, Kaylena A. Ehgoetz Martens, Richard Shine, Peter T. Bell, James M. Shine, Olaf Sporns, Oluwasanmi Koyejo, Russell A. Poldrack
Publikováno v:
Nature Neuroscience. 22:289-296
The human brain integrates diverse cognitive processes into a coherent whole, shifting fluidly as a function of changing environmental demands. Despite recent progress, the neurobiological mechanisms responsible for this dynamic system-level integrat
Autor:
Nadir Muzaffar, Ayis Pyrros, Oluwasanmi Koyejo, William L. Galanter, Melinda Willis, Adam E. Flanders, Paul Nikolaidis, Viveka Boddipalli, Jai Nebhrajani, Eric M. Hart, Daniel R. Wenzke, Andrew C. Chen, Jorge Mario Rodríguez-Fernández, Jeanne M. Horowitz, Patrick Cole, Samuel Harford, Nasir Siddiqui, Houshang Darabi
Publikováno v:
Academic Radiology
Rationale and Objectives The clinical prognosis of outpatients with coronavirus disease 2019 (COVID-19) remains difficult to predict, with outcomes including asymptomatic, hospitalization, intubation, and death. Here we determined the prognostic valu
Autor:
Weiman Yan, Leihao Chen, Jacky Y. Zhang, Brad Sutton, Oluwasanmi Koyejo, Maohao Shen, Neel Jani
Publikováno v:
ISBI
Over the last decade, deep learning methods have achieved state-of-the-art for medical image segmentation tasks. However, the difficulty of obtaining sufficient labeled data can be a bottleneck. To this end, we design a novel active learning framewor
Publikováno v:
ISBI
Radiology exams require exposing a patient to a variable dosage of radiation. Importantly, the amount of radiation used during the exam directly corresponds to the level of noise in the resulting image, and increased amounts of radiation can pose hea
Publikováno v:
Bioinformatics (Oxford, England). 36(Suppl_2)
Motivation While each cancer is the result of an isolated evolutionary process, there are repeated patterns in tumorigenesis defined by recurrent driver mutations and their temporal ordering. Such repeated evolutionary trajectories hold the potential