Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Olli Tapiola"'
Autor:
Steve Hofmann, Olli Tapiola
Publikováno v:
Annales de l'Institut Fourier. 70:1595-1638
Suppose that $E \subset \mathbb{R}^{n+1}$ is a uniformly rectifiable set of codimension $1$. We show that every harmonic function is $\varepsilon$-approximable in $L^p(\Omega)$ for every $p \in (1,\infty)$, where $\Omega := \mathbb{R}^{n+1} \setminus
Autor:
Olli Tapiola, Steve Hofmann
We construct extensions of Varopolous type for functions $f \in \text{BMO}(E)$, for any uniformly rectifiable set $E$ of codimension one. More precisely, let $\Omega \subset \mathbb{R}^{n+1}$ be an open set satisfying the corkscrew condition, with an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c2107a09ea3f9ce2ad7c7f44fe90e23a
http://urn.fi/URN:NBN:fi:jyu-202108184587
http://urn.fi/URN:NBN:fi:jyu-202108184587
Publikováno v:
BIRD: BCAM's Institutional Repository Data
instname
instname
We consider homogeneous singular kernels, whose angular part is bounded, but need not have any continuity. For the norm of the corresponding singular integral operators on the weighted space $L^2(w)$, we obtain a bound that is quadratic in the $A_2$
We consider Coifman--Fefferman inequalities for rough homogeneous singular integrals $T_��$ and $C_p$ weights. It was recently shown by Li-P��rez-Rivera-R��os-Roncal that $$ \|T_��\|_{L^p(w)} \le C_{p,T,w} \|Mf\|_{L^p(w)} $$ for every
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::348663ec6bb237af2714e0b29f670088
http://arxiv.org/abs/1909.08344
http://arxiv.org/abs/1909.08344
Autor:
Olli Tapiola, Tuomas Hytönen
Publikováno v:
Journal of Approximation Theory
In any quasi-metric space of homogeneous type, Auscher and Hyt\"onen recently gave a construction of orthonormal wavelets with H\"older-continuity exponent $\eta>0$. However, even in a metric space, their exponent is in general quite small. In this p
In the Euclidean setting, the Fujii–Wilson-type $$A_\infty $$ weights satisfy a reverse Holder inequality (RHI), but in spaces of homogeneous type the best-known result has been that $$A_\infty $$ weights satisfy only a weak reverse Holder inequali
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3326e5d490e652a0c19256b11259c98c
http://hdl.handle.net/10138/313152
http://hdl.handle.net/10138/313152
Autor:
Olli Tapiola
With the help of recent adjacent dyadic constructions by Hyt��nen and the author, we give an alternative proof of results of Lechner, M��ller and Passenbrunner about the $L^p$-boundedness of shift operators acting on functions $f \in L^p(X;E)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::86983f4597996c841572b83f589caee4
http://arxiv.org/abs/1504.01596
http://arxiv.org/abs/1504.01596