Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Olkhovikov, Grigory K"'
Autor:
Olkhovikov, Grigory K.
We define a Kripke semantics for a conditional logic based on the propositional logic $\mathsf{N4}$, the paraconsistent variant of Nelson's logic of strong negation; we axiomatize the minimal system induced by this semantics. The resulting logic, whi
Externí odkaz:
http://arxiv.org/abs/2311.02361
Publikováno v:
The Review of Symbolic Logic 17 (2024) 611-633
In this article we show that bi-intuitionistic predicate logic lacks the Craig Interpolation Property. We proceed by adapting the counterexample given by Mints, Olkhovikov and Urquhart for intuitionistic predicate logic with constant domains (G. Mint
Externí odkaz:
http://arxiv.org/abs/2205.00245
Autor:
Olkhovikov, Grigory K.
Publikováno v:
The Review of Symbolic Logic 13 (2020) 459-482
We consider the propositional logic equipped with Chellas stit operators for a finite set of individual agents plus the historical necessity modality. We settle the question of whether such a logic enjoys restricted interpolation property, which requ
Externí odkaz:
http://arxiv.org/abs/1804.08306
Autor:
Olkhovikov, Grigory K.
We consider the explicit fragment of the basic justification stit logic introduced in earlier publications. We define a Hilbert-style axiomatic system for this logic and show that this system is strongly complete relative to the intended semantics.
Externí odkaz:
http://arxiv.org/abs/1709.06893
Autor:
Olkhovikov, Grigory K.
In Part I of this paper, we presented a Hilbert-style system $\Sigma_D$ axiomatizing of stit logic of justification announcements (JA-STIT) interpreted over models with discrete time structure. In this part, we prove three frame definability results
Externí odkaz:
http://arxiv.org/abs/1708.06295
Autor:
Olkhovikov, Grigory K.
We present a completeness result for the implicit fragment of justification stit logic. Although this fragment allows for no strongly complete axiomatization, we show that a restricted form of strong completeness (subsuming weak completeness) is avai
Externí odkaz:
http://arxiv.org/abs/1705.09119
Autor:
Olkhovikov, Grigory K.
We formulate a Hilbert-style axiomatic system for STIT logic of imagination recently proposed by H. Wansing and prove its completeness by the method of canonical models.
Comment: 8 pages, 0 figures
Comment: 8 pages, 0 figures
Externí odkaz:
http://arxiv.org/abs/1504.02743
Publikováno v:
Journal of Philosophical Logic, 2019 Dec 01. 48(6), 981-1001.
Externí odkaz:
https://www.jstor.org/stable/45277711
Publikováno v:
Studia Logica: An International Journal for Symbolic Logic, 2019 Feb 01. 107(1), 167-194.
Externí odkaz:
https://www.jstor.org/stable/45096845
Autor:
Olkhovikov, Grigory K.
Publikováno v:
The Review of Symbolic Logic / Volume 6 / Issue 02 / June 2013, pp 348-365
Notions of k-asimulation and asimulation are introduced as asymmetric counterparts to k-bisimulation and bisimulation, respectively. It is proved that a first-order formula is equivalent to a standard translation of an intuitionistic propositional fo
Externí odkaz:
http://arxiv.org/abs/1207.4414