Zobrazeno 1 - 10
of 180
pro vyhledávání: '"Oliynyk, Todd A."'
Publikováno v:
Phys. Rev. D 110 (2024), 044060
Using numerical methods, we examine, under a Gowdy symmetry assumption, the dynamics of nonlinearly perturbed FLRW fluid solutions of the Einstein-Euler-scalar field equations in the contracting direction for linear equations of state $p = K\rho$ and
Externí odkaz:
http://arxiv.org/abs/2405.09095
We demonstrate a novel phase transition from stable to unstable fluid behaviour for fluid-filled cosmological spacetimes undergoing decelerated expansion. This transition occurs when the fluid speed of sound $c_S$ exceeds a critical value relative to
Externí odkaz:
http://arxiv.org/abs/2405.03431
We study the future stability of cosmological fluids, in spacetimes with an accelerated expansion, which exhibit extreme tilt behavior, ie. their fluid velocity becoming asymptotically null at timelike infinity. It has been predicted in the article \
Externí odkaz:
http://arxiv.org/abs/2404.06789
We design in this work a discrete de Rham complex on manifolds. This complex, written in the framework of exterior calculus, is applicable on meshes on the manifold with generic elements, and has the same cohomology as the continuous de Rham complex.
Externí odkaz:
http://arxiv.org/abs/2401.16130
Autor:
Oliynyk, Todd A.
On exponentially expanding Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) spacetimes, there is a distinguished family of spatially homogeneous and isotropic solutions to the relativistic Euler equations with a linear equation of state of the form $p=
Externí odkaz:
http://arxiv.org/abs/2310.19184
Autor:
Beyer, Florian, Oliynyk, Todd A.
We establish, in spacetime dimensions $n\geq 3$, the nonlinear stability in the contracting direction of Friedmann-Lema\^itre-Robertson-Walker (FLRW) solutions to the Einstein-Euler-scalar field equations with linear equations of state $P=c_s^2 \rho$
Externí odkaz:
http://arxiv.org/abs/2308.07475
Publikováno v:
Phys. Rev. D 107 (2023), 104030
Using numerical methods, we examine the dynamics of nonlinear perturbations in the expanding time direction, under a Gowdy symmetry assumption, of FLRW fluid solutions to the Einstein-Euler equations with a positive cosmological constant $\Lambda>0$
Externí odkaz:
http://arxiv.org/abs/2302.03159
Publikováno v:
Int. Math. Res. Not. 2024 (2024), 4328-4383
In this paper we study cosmological solutions to the Einstein--Euler equations. We first establish the future stability of nonlinear perturbations of a class of homogeneous solutions to the relativistic Euler equations on fixed linearly expanding cos
Externí odkaz:
http://arxiv.org/abs/2301.11191
Autor:
Marshall, Elliot, Oliynyk, Todd A.
Publikováno v:
Lett. Math. Phys. 113 (2023), 102
For $1/3
Externí odkaz:
http://arxiv.org/abs/2209.06982
We present a discretisation of the 3+1 formulation of the Yang-Mills equations in the temporal gauge, using a Lie algebra-valued extension of the discrete de Rham (DDR) sequence, that preserves the non-linear constraint exactly. In contrast to Maxwel
Externí odkaz:
http://arxiv.org/abs/2208.12009