Zobrazeno 1 - 10
of 167
pro vyhledávání: '"Olivier Teytaud"'
Autor:
Nataliya Sokolovska, Olivier Teytaud, Salwa Rizkalla, MicroObese consortium, Karine Clément, Jean-Daniel Zucker
Publikováno v:
PLoS ONE, Vol 10, Iss 9, p e0134683 (2015)
In large-scale systems biology applications, features are structured in hidden functional categories whose predictive power is identical. Feature selection, therefore, can lead not only to a problem with a reduced dimensionality, but also reveal some
Externí odkaz:
https://doaj.org/article/95b352e106ed4d289cf33e27f78dff6a
Black-Box Optimization Revisited: Improving Algorithm Selection Wizards Through Massive Benchmarking
Autor:
Laurent Meunier, Paco Wong, Jeremy Rapin, Antoine Moreau, Olivier Teytaud, Carola Doerr, Baptiste Roziere, Herilalaina Rakotoarison
Publikováno v:
IEEE Transactions on Evolutionary Computation
IEEE Transactions on Evolutionary Computation, Institute of Electrical and Electronics Engineers, 2021, ⟨10.1109/TEVC.2021.3108185⟩
IEEE Transactions on Evolutionary Computation, 2022, 26 (3), ⟨10.1109/TEVC.2021.3108185⟩
IEEE Transactions on Evolutionary Computation, Institute of Electrical and Electronics Engineers, 2021, ⟨10.1109/TEVC.2021.3108185⟩
IEEE Transactions on Evolutionary Computation, 2022, 26 (3), ⟨10.1109/TEVC.2021.3108185⟩
International audience; Existing studies in black-box optimization for machine learning suffer from low generalizability, caused by a typically selective choice of problem instances used for training and testing different optimization algorithms. Amo
Autor:
Mamadou Aliou, Barry, Vincent, Berthier, Bodo D, Wilts, Marie-Claire, Cambourieux, Pauline, Bennet, Rémi, Pollès, Olivier, Teytaud, Emmanuel, Centeno, Nicolas, Biais, Antoine, Moreau
Publikováno v:
Scientific Reports, Vol 10, Iss 1, Pp 1-10 (2020)
Scientific Reports
Scientific Reports
Nature features a plethora of extraordinary photonic architectures that have been optimized through natural evolution in order to more efficiently reflect, absorb or scatter light. While numerical optimization is increasingly and successfully used in
Autor:
Risto Trajanov, Ana Nikolikj, Gjorgjina Cenikj, Fabien Teytaud, Mathurin Videau, Olivier Teytaud, Tome Eftimov, Manuel López-Ibáñez, Carola Doerr
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031147135
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::106a8eb6bc0310512247e13bdadade2a
https://doi.org/10.1007/978-3-031-14714-2_2
https://doi.org/10.1007/978-3-031-14714-2_2
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031020551
Proc. EuroGP 2022
Proc. EuroGP 2022, Apr 2022, Madrid, France. pp.278-293, ⟨10.1007/978-3-031-02056-8_18⟩
Proc. EuroGP 2022
Proc. EuroGP 2022, Apr 2022, Madrid, France. pp.278-293, ⟨10.1007/978-3-031-02056-8_18⟩
International audience; Deep reinforcement learning has met noticeable successes recently for a wide range of control problems. However, this is typically based on thousands of weights and non-linearities, making solutions complex, not easily reprodu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d028f2b2ab55dc76d79a5f967d3ebb3
https://doi.org/10.1007/978-3-031-02056-8_18
https://doi.org/10.1007/978-3-031-02056-8_18
Publikováno v:
FOGA
Parallel black box optimization consists in estimating the optimum of a function using $\lambda$ parallel evaluations of $f$. Averaging the $\mu$ best individuals among the $\lambda$ evaluations is known to provide better estimates of the optimum of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3cc7bf2b5d789e71c5cf8013f1751f9f
https://hal.archives-ouvertes.fr/hal-03345019
https://hal.archives-ouvertes.fr/hal-03345019
Publikováno v:
ACM SIGEVOlution
ACM SIGEVOlution, Association for Computing Machinery (ACM), 2021, 14, pp.8. ⟨10.1145/3460310.3460312⟩
ACM SIGEVOlution, 2021, 14 (1), pp.8-15. ⟨10.1145/3460310.3460312⟩
ACM SIGEVOlution, Association for Computing Machinery (ACM), 2021, 14, pp.8. ⟨10.1145/3460310.3460312⟩
ACM SIGEVOlution, 2021, 14 (1), pp.8-15. ⟨10.1145/3460310.3460312⟩
Nevergrad is an open source platform for black-box optimization. Join the user group! And if you like Nevergrad, please support us by adding a star on GitHub (https://github.com/facebookresearch/nevergrad).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7a8c0dd648e5203d30a62eaf1c0981e5
https://hal.uca.fr/hal-03464208
https://hal.uca.fr/hal-03464208
Autor:
Mamadou Aliou Barry, Sara Ibrahim, Antoine Moreau, François Réveret, Angélique Bousquet, Vincent Berthier, Emmanuel Centeno, Perrine Juillet, Olivier Teytaud, Pauline Bennet
Publikováno v:
Physical Review B
Physical Review B, American Physical Society, 2021, 103 (12), ⟨10.1103/PhysRevB.103.125135⟩
Physical Review B, 2021, 103 (12), ⟨10.1103/PhysRevB.103.125135⟩
Physical Review B, American Physical Society, 2021, 103 (12), ⟨10.1103/PhysRevB.103.125135⟩
Physical Review B, 2021, 103 (12), ⟨10.1103/PhysRevB.103.125135⟩
International audience; We optimize multilayered anti-reflective coatings for photovoltaic devices, using modern evolutionary algorithms. We apply a rigorous methodology to show that a given structure, which is particularly regular (i.e. essentially
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::35a9e59ab1060ec66c51739b5564ac17
https://hal.uca.fr/hal-03172152
https://hal.uca.fr/hal-03172152
Autor:
Fabien Teytaud, Jeremy Rapin, Hanhe Lin, Baptiste Roziere, Vlad Hosu, Olivier Teytaud, Mariia Zameshina
Publikováno v:
Computer Vision – ACCV 2020 ISBN: 9783030695378
ACCV (4)
Asia Conference on Computer Vision (ACCV)
Asia Conference on Computer Vision (ACCV), Nov 2020, Virtual, Japan
ACCV (4)
Asia Conference on Computer Vision (ACCV)
Asia Conference on Computer Vision (ACCV), Nov 2020, Virtual, Japan
We propose to use a quality estimator and evolutionary methods to search the latent space of generative adversarial networks trained on small, difficult datasets, or both. The new method leads to the generation of significantly higher quality images
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9edbbbe4d8a2d9fce31f6e4c6c1b624a
https://doi.org/10.1007/978-3-030-69538-5_41
https://doi.org/10.1007/978-3-030-69538-5_41
Publikováno v:
Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020
Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020, pp.661-674, 2020, ⟨10.1007/978-3-030-58115-2_46⟩
Parallel Problem Solving from Nature – PPSN XVI ISBN: 9783030581145
PPSN (2)
Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020, pp.661-674, 2020, ⟨10.1007/978-3-030-58115-2_46⟩
Parallel Problem Solving from Nature – PPSN XVI ISBN: 9783030581145
PPSN (2)
Choosing the right selection rate is a long standing issue in evolutionary computation. In the continuous unconstrained case, we prove mathematically that a single parent \(\mu =1\) leads to a sub-optimal simple regret in the case of the sphere funct
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::16ec91dea20a788647418e8a6b5df3af
https://hal.archives-ouvertes.fr/hal-03135540
https://hal.archives-ouvertes.fr/hal-03135540