Zobrazeno 1 - 10
of 190
pro vyhledávání: '"Olivier Schiffmann"'
Autor:
Fratila, Dragos
In \cite{S} O. Schiffmann gave a presentation of the Drinfel'd double of the elliptic Hall algebra which is similar in spirit to Drinfel'd's new realization of quantum affine algebras. Using this result together with a part of his proof we can provid
Externí odkaz:
http://arxiv.org/abs/1109.5991
Autor:
Dragos Fratila
In (J. Algebr. Comb. doi: 10.1007/s10801-011-0302-8 , 2011), O. Schiffmann gave a presentation of the Drinfeld double of the elliptic Hall algebra which is similar in spirit to Drinfeld's new realization of quantum affine algebras. Using this result
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d37114097507f100a7f7536da6a73508
http://arxiv.org/abs/1109.5991
http://arxiv.org/abs/1109.5991
Autor:
Olivier, Schiffmann
In this short note, we show that the Ginzburg-Vasserot map between the quantum affine algebra of type A_(n-1) and the equivariant K-theory group of the Steinberg Variety (of n-step flags in C^d) restricts and remains surjective at the level of the in
Externí odkaz:
http://arxiv.org/abs/math/9808038
Autor:
Fratila, Dragos
Publikováno v:
Journal of Algebraic Combinatorics; Mar2012, Vol. 35 Issue 2, p263-267, 5p
Autor:
Damien Dattler, Justin T. Foy, Jean-Rémy Colard-Itté, Quan Li, Emilie Moulin, Olivier Schiffmann, Nicolas Giuseppone, Daniel P. Funeriu, Gad Fuks, Antoine Goujon
Publikováno v:
Nature Nanotechnology
Nature Nanotechnology, 2017, 12 (6), pp.540-545. ⟨10.1038/nnano.2017.28⟩
Nature Nanotechnology, 2017, 12 (6), pp.540-545. ⟨10.1038/nnano.2017.28⟩
A current challenge in the field of artificial molecular machines is the synthesis and implementation of systems that can produce useful work when fuelled with a constant source of external energy. The first experimental achievements of this kind con
Autor:
Olivier Schiffmann, Francesco Sala
Publikováno v:
Selecta Mathematica (New Series)
Selecta Mathematica (New Series), Springer Verlag, 2019, 25 (5), ⟨10.1007/s00029-019-0521-8⟩
Selecta Mathematica (New Series), Springer Verlag, 2019, 25 (5), ⟨10.1007/s00029-019-0521-8⟩
In the present paper, we give a definition of the quantum group $$\mathbf {U}_\upsilon (\mathfrak {sl}(S^1))$$ of the circle $$S^1:={\mathbb {R}}/{\mathbb {Z}}$$, and its fundamental representation. Such a definition is motivated by a realization of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::143670d420e2b896ed4c4689d4225f78
https://hal.archives-ouvertes.fr/hal-03100062
https://hal.archives-ouvertes.fr/hal-03100062
Publikováno v:
International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), 2019, 2019 (13), pp.3981-4003. ⟨10.1093/imrn/rnx244⟩
International Mathematics Research Notices, Oxford University Press (OUP), 2019, 2019 (13), pp.3981-4003. ⟨10.1093/imrn/rnx244⟩
We prove that the number of geometrically indecomposable representations of fixed dimension vector $\mathbf{d}$ of a canonical algebra $C$ defined over a finite field $\mathbb{F}_q$ is given by a polynomial in $q$ (depending on $C$ and $\mathbf{d}$).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dba16945c42aa9f5e2bac35a78144836
https://hal.archives-ouvertes.fr/hal-03100059
https://hal.archives-ouvertes.fr/hal-03100059
Autor:
Francesco Sala, Olivier Schiffmann
In [arXiv:1711.07391] we have defined quantum groups $\mathbf{U}_\upsilon(\mathfrak{sl}(\mathbb{R}))$ and $\mathbf{U}_\upsilon(\mathfrak{sl}(S^1))$, which can be interpreted as continuous generalizations of the quantum groups of the Kac-Moody Lie alg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5506350a7587844a024fd43f91faf17a
Autor:
Olivier Schiffmann
A survey of the theory of Kac polynomials for quivers and for curves. In particular, we describe the representation-theoretic meaning of Kac polynomials in terms of Hall algebras, and the geometric meaning of Kac polynomials in relation to the geomet
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db403b2efce98485cc14e6ffbb924b1a
http://arxiv.org/abs/1802.09760
http://arxiv.org/abs/1802.09760
Autor:
Tristan Bozec, Olivier Schiffmann
Publikováno v:
Mathematische Zeitschrift
Mathematische Zeitschrift, Springer, In press, ⟨10.1007/s00209-018-2155-5⟩
Mathematische Zeitschrift, Springer, In press, ⟨10.1007/s00209-018-2155-5⟩
For an arbitrary quiver Q and dimension vector d we prove that the dimension of the space of cuspidal functions on the moduli stack of representations of Q of dimension d over a finite field F_q is given by a polynomial in q with rational coefficient
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::04cff045e9dcf78368db8f818191cea7
https://hal.archives-ouvertes.fr/hal-01709066/file/1710.03036.pdf
https://hal.archives-ouvertes.fr/hal-01709066/file/1710.03036.pdf