Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Olivier Regniers"'
Publikováno v:
Revue Française de Photogrammétrie et de Télédétection, Iss 208 (2014)
Cette étude évalue le potentiel des modèles de texture SIRV sur ondelettes pour la détection de parcelles viticoles dans les images à très haute résolution de type PLEIADES et compare les performances de ces modèles avec des méthodes de réf
Externí odkaz:
https://doaj.org/article/6a20912d16bc48259a9b40a6f21db2e2
Autor:
Valentin PILLET, Oscar VOISIN, Manon BESSET, Virginie LAFON, Aurélie DEHOUCK, Olivier REGNIERS, Nicolas DEBONNAIRE, Stéphane COSTA
Publikováno v:
XVIIèmes Journées, Chatou.
Publikováno v:
IEEE Transactions on Geoscience and Remote Sensing. 55:248-260
This paper deals with parametric techniques for the description of texture on very high resolution (VHR) remote sensing images. These techniques focus on the property of anisotropy as described by the local structure tensor (LST). The novelty of this
Publikováno v:
IEEE Transactions on Geoscience and Remote Sensing. 54:3722-3735
In this paper, we explore the potentialities of using wavelet-based multivariate models for the classification of very high resolution optical images. A strategy is proposed to apply these models in a supervised classification framework. This strateg
Autor:
Milto Miltiadou, Vito De Pasquale, Pol Kolokoussis, Marco Polignano, Anastasia Sarelli, Marco de Gemmis, Bogdan Despotov, Kleanthis Karamvasis, Vasilis Kopsacheilis, Michail Vaitis, Dominik Grether, Ilias Ioannou, Virginie Lafon, Sergio Samarelli, Olivier Regniers, Konstantinos Topouzelis, Jenny Malig, Christiana Papoutsa
Publikováno v:
Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018).
SEO-DWARF (Semantic Earth Observation Data Web Alert and Retrieval Framework) is a project funded by the European Union Horizon 2020 research and innovation programme. The main objective of the project is to realize the content-based search of Earth
Publikováno v:
XVèmes Journées, La Rochelle.
Publikováno v:
IGARSS 2016-2016 IEEE International Geoscience and Remote Sensing Symposium
IGARSS 2016-2016 IEEE International Geoscience and Remote Sensing Symposium, Jul 2016, Beijing, France. ⟨10.1109/IGARSS.2016.7729472⟩
IGARSS
IGARSS 2016-2016 IEEE International Geoscience and Remote Sensing Symposium, Jul 2016, Beijing, France. ⟨10.1109/IGARSS.2016.7729472⟩
IGARSS
This paper proposes a novel approach for texture-based image indexing and retrieval in the scope of very high resolution (VHR) optical imagery. Our motivation is to take into account local textural features and structures inside each image to measure
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::62225013e36b6bece0ae638ae31a10f2
https://hal.science/hal-01710222
https://hal.science/hal-01710222
Publikováno v:
Remote Sensing
Remote Sensing, MDPI, 2016, 8 (368), pp.1-21. ⟨10.3390/rs8050368⟩
Remote Sensing, Vol 8, Iss 5, p 368 (2016)
Volume 8
Issue 5
Pages: 368
Remote Sensing, MDPI, 2016, 8 (368), pp.1-21. ⟨10.3390/rs8050368⟩
Remote Sensing, Vol 8, Iss 5, p 368 (2016)
Volume 8
Issue 5
Pages: 368
International audience; In this article, we develop a novel method for the detection of vineyard parcels in agricultural landscapes based on very high resolution (VHR) optical remote sensing images. Our objective is to perform texture-based image ret
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f4557867f258e880f398c863f0b13b5d
https://hal.archives-ouvertes.fr/hal-01311993
https://hal.archives-ouvertes.fr/hal-01311993
Publikováno v:
IGARSS
In this study, we propose to evaluate the potential of combining very high resolution optical and SAR images for the classification of oyster habitats in tidal flats. To describe the classes of interest in both data, features are extracted by using w
Publikováno v:
IGARSS
This work investigates the discriminative power of wavelet decomposition based texture features in forest cover classification. Our texture features are used as inputs in a random forests classifier. The performances of this tree-based ensemble class