Zobrazeno 1 - 10
of 106
pro vyhledávání: '"Olivier Ramaré"'
Publikováno v:
Mathematics of Computation. 92:2381-2411
For all q ≥ 2 q\ge 2 and for all invertible residue classes a a modulo q q , there exists a natural number that is congruent to a a modulo q q and that is the product of exactly three primes, all of which are below ( 10 15 q ) 5 / 2 (10^{15}q)^{5/2
Publikováno v:
International Journal of Number Theory. 19:843-857
For any [Formula: see text], there exists [Formula: see text] such for any [Formula: see text] and any invertible residue class [Formula: see text] modulo [Formula: see text], there exists a natural number that is congruent to [Formula: see text] mod
Autor:
Olivier Ramaré
Publikováno v:
Proceedings-Mathematical Sciences
Proceedings-Mathematical Sciences, 2022, 132, ⟨10.1007/s12044-022-00698-z⟩
Proceedings-Mathematical Sciences, 2022, 132, ⟨10.1007/s12044-022-00698-z⟩
International audience; We prove that the number of fractions h 1 / h 2 of integers h 1 , h 2 a subset A ⊂ H∩[1, X ] is at least α X/(log X) 3/2 , where H is the set p −1, p being a prime such that p +1 is a sum of two coprime squares. So, thi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7f31e4408b00d3873a8f50f8ad7548cb
https://hal.science/hal-04057230
https://hal.science/hal-04057230
Publikováno v:
Trudy Matematicheskogo Instituta imeni V.A. Steklova. 314:211-247
Исходная задача, решаемая в работе, - представить классы вычетов по модулю $q$ в виде суммы трех слагаемых, два из которых принадлежат дост
Autor:
Olivier Ramaré, G. K. Viswanadham
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 314:203-237
Our initial problem is to represent classes $$m$$ modulo $$q$$ by a sum of three terms, two being taken from rather small sets $$\mathcal A$$ and $$\mathcal B$$ and the third one having an odd number of prime factors (the so-called irregular numbers
Autor:
Olivier Ramaré
Publikováno v:
Excursions in Multiplicative Number Theory ISBN: 9783030731687
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::777119e0aee9bb5dfbe9268e5c0e5915
https://doi.org/10.1007/978-3-030-73169-4_14
https://doi.org/10.1007/978-3-030-73169-4_14
Autor:
Olivier Ramaré
Publikováno v:
Excursions in Multiplicative Number Theory ISBN: 9783030731687
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6aa4aa991a46be53486f82a411088998
https://doi.org/10.1007/978-3-030-73169-4_18
https://doi.org/10.1007/978-3-030-73169-4_18
Autor:
Olivier Ramaré
Publikováno v:
Excursions in Multiplicative Number Theory ISBN: 9783030731687
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::35fbddc14747a2e42fe08cb8ce1083d5
https://doi.org/10.1007/978-3-030-73169-4_16
https://doi.org/10.1007/978-3-030-73169-4_16
Autor:
Olivier Ramaré
Publikováno v:
Excursions in Multiplicative Number Theory ISBN: 9783030731687
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::164591a1ce7bfebdfe4cf8b8aaeedc15
https://doi.org/10.1007/978-3-030-73169-4_7
https://doi.org/10.1007/978-3-030-73169-4_7
Autor:
Olivier Ramaré
Publikováno v:
Excursions in Multiplicative Number Theory ISBN: 9783030731687
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b4518f70524b5befdb9cb8b000bc273b
https://doi.org/10.1007/978-3-030-73169-4_19
https://doi.org/10.1007/978-3-030-73169-4_19