Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Olivier Goudet"'
Publikováno v:
Evolutionary Computation in Combinatorial Optimization ISBN: 9783031300349
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c9ba298e36c3e7206e327a753d2ba3a3
https://doi.org/10.1007/978-3-031-30035-6_7
https://doi.org/10.1007/978-3-031-30035-6_7
Publikováno v:
Evolutionary Computation in Combinatorial Optimization ISBN: 9783031041471
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::75b5e0c9c457ba5d32067eaaf0df9b9c
https://doi.org/10.1007/978-3-031-04148-8_1
https://doi.org/10.1007/978-3-031-04148-8_1
Autor:
Olivier Goudet, Jin-Kao Hao
The partial Latin square extension problem is to fill as many as possible empty cells of a partially filled Latin square. This problem is a useful model for a wide range of applications in diverse domains. This paper presents the first massively para
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8b23d17ac1bbbe14d5b94e8674f14fe3
http://arxiv.org/abs/2103.10453
http://arxiv.org/abs/2103.10453
Publikováno v:
Knowledge-Based Systems
Knowledge-Based Systems, Elsevier, 2021, 212, pp.106581-. ⟨10.1016/j.knosys.2020.106581⟩
Knowledge-Based Systems, Elsevier, 2021, 212, pp.106581-. ⟨10.1016/j.knosys.2020.106581⟩
Graph coloring involves assigning colors to the vertices of a graph such that two vertices linked by an edge receive different colors. Graph coloring problems are general models that are very useful to formulate many relevant applications and, howeve
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f546a74dae01c9593de345b03dae37d2
https://hal.archives-ouvertes.fr/hal-03493613
https://hal.archives-ouvertes.fr/hal-03493613
Given an undirected graph $G=(V,E)$ with a set of vertices $V$ and a set of edges $E$, a graph coloring problem involves finding a partition of the vertices into different independent sets. In this paper we present a new framework that combines a dee
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7ff3cbd3341f10ae9b35b8fdb0a94462
Publikováno v:
Journal of Machine Learning Research
Journal of Machine Learning Research, 2020, 21, pp.1-5
Journal of Machine Learning Research, Microtome Publishing, 2020, 21, pp.1-5
HAL
Journal of Machine Learning Research, 2020, 21, pp.1-5
Journal of Machine Learning Research, Microtome Publishing, 2020, 21, pp.1-5
HAL
International audience; This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The Cdt package implements an end-to-end
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::ef3b4eb44543392d136b0f458ce7d1d3
https://univ-angers.hal.science/hal-02945539/document
https://univ-angers.hal.science/hal-02945539/document
Publikováno v:
Journal of Artificial Societies and Social Simulation. 23
In this paper, we provide an overview of the WorkSim model, an agent-based framework designed to study labor markets. The first objective of this model was to reproduce, within rigorous stock-flow accounting, the gross flows of individuals between im
Publikováno v:
Cause Effect Pairs in Machine Learning
Guyon, Isabelle; Statnikov, Alexander; Batu, Berna Bakir. Cause Effect Pairs in Machine Learning, Springer Verlag, pp.27-99, 2019, The Springer Series on Challenges in Machine Learning, 978-3-030-21809-6. ⟨10.1007/978-3-030-21810-2_2⟩
Cause Effect Pairs in Machine Learning ISBN: 9783030218096
Guyon, Isabelle; Statnikov, Alexander; Batu, Berna Bakir. Cause Effect Pairs in Machine Learning, Springer Verlag, pp.27-99, 2019, The Springer Series on Challenges in Machine Learning, 978-3-030-21809-6. ⟨10.1007/978-3-030-21810-2_2⟩
Cause Effect Pairs in Machine Learning ISBN: 9783030218096
International audience; This chapter addresses the problem of benchmarking causal models or validating particular putative causal relationships, in the limited setting of cause-effect pairs, when empirical “observational” data are available. We d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f36aa2cad0b0d772947449604bc1dea4
https://hal.inria.fr/hal-02433198
https://hal.inria.fr/hal-02433198
Publikováno v:
Cause Effect Pairs in Machine Learning
Guyon, Isabelle; Statnikov, Alexander; Batu, Berna Bakir. Cause Effect Pairs in Machine Learning, Springer Verlag, pp.155-189, 2019, The Springer Series on Challenges in Machine Learning, 978-3-030-21809-6. ⟨10.1007/978-3-030-21810-2_4⟩
Cause Effect Pairs in Machine Learning ISBN: 9783030218096
Guyon, Isabelle; Statnikov, Alexander; Batu, Berna Bakir. Cause Effect Pairs in Machine Learning, Springer Verlag, pp.155-189, 2019, The Springer Series on Challenges in Machine Learning, 978-3-030-21809-6. ⟨10.1007/978-3-030-21810-2_4⟩
Cause Effect Pairs in Machine Learning ISBN: 9783030218096
International audience; The cause-effect pair challenge has, for the first time, formulated the cause-effect problem as a learning problem in which a causation coefficient is trained from data. This can be thought of as a kind of meta learning. This
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::576f894a565b8689bba7b78038148ef9
https://hal.inria.fr/hal-02433203
https://hal.inria.fr/hal-02433203
Publikováno v:
Cause Effect Pairs in Machine Learning
Guyon, Isabelle; Statnikov, Alexander; Batu, Berna Bakir. Cause Effect Pairs in Machine Learning, Springer Verlag, pp.101-153, 2019, The Springer Series on Challenges in Machine Learning, 978-3-030-21809-6. ⟨10.1007/978-3-030-21810-2_3⟩
Cause Effect Pairs in Machine Learning ISBN: 9783030218096
Guyon, Isabelle; Statnikov, Alexander; Batu, Berna Bakir. Cause Effect Pairs in Machine Learning, Springer Verlag, pp.101-153, 2019, The Springer Series on Challenges in Machine Learning, 978-3-030-21809-6. ⟨10.1007/978-3-030-21810-2_3⟩
Cause Effect Pairs in Machine Learning ISBN: 9783030218096
International audience; Finding the causal direction in the cause-effect pair problem has been addressed in the literature by comparing two alternative generative models X → Y and Y → X. In this chapter, we first define what is meant by generativ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6014dc4ea2264a99af8fd3305b1a1aa0
https://hal.inria.fr/hal-02433201/document
https://hal.inria.fr/hal-02433201/document