Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Olivier Fercoq"'
Autor:
Ion Necoara, Olivier Fercoq
Publikováno v:
Mathematics of Operations Research. 47:2641-2666
This paper deals with constrained convex problems, where the objective function is smooth and strongly convex, and the feasible set is described by a large number of closed convex (possibly nonpolyhedral) sets. In order to deal efficiently with the c
Autor:
Olivier Fercoq
Publikováno v:
Optimization Methods and Software
Optimization Methods and Software, Taylor & Francis, 2019, pp.1-21. ⟨10.1080/10556788.2019.1658758⟩
Optimization Methods and Software, Taylor & Francis, 2019, pp.1-21. ⟨10.1080/10556788.2019.1658758⟩
International audience; We present a generic coordinate descent solver for the minimization of a nonsmooth convex objective with structure. The method can deal in particular with problems with linear constraints. The implementation makes use of effic
Publikováno v:
Microelectronics Journal. 122:105386
Analog-to-feature (A2F) conversion is an acquisition method thought for IoT devices in order to increase wireless sensor’s battery life. The operating principle of A2F is to perform classification tasks at sub-Nyquist rate, by extracting relevant f
Publikováno v:
2020 18th IEEE International New Circuits and Systems Conference (NEWCAS)
2020 18th IEEE International New Circuits and Systems Conference (NEWCAS), Jun 2020, Montréal, Canada. pp.186-189, ⟨10.1109/NEWCAS49341.2020.9159817⟩
NEWCAS
2020 18th IEEE International New Circuits and Systems Conference (NEWCAS), Jun 2020, Montréal, Canada. pp.186-189, ⟨10.1109/NEWCAS49341.2020.9159817⟩
NEWCAS
International audience; One of the main challenges in the field of wireless sensors is to increase their battery life. Analog-to-feature (A2F) conversion is an acquisition method thought for IoT devices, that perform classification tasks at sub-Nyqui
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ec324e9885ba3645955b5c8a94d5dc7
https://hal.archives-ouvertes.fr/hal-02927208
https://hal.archives-ouvertes.fr/hal-02927208
In this paper, we analyze the recently proposed stochastic primal-dual hybrid gradient (SPDHG) algorithm and provide new theoretical results. In particular, we prove almost sure convergence of the iterates to a solution with convexity and linear conv
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7da97ed8998ac55bae2bb6b27046987c
https://hal.archives-ouvertes.fr/hal-02362067
https://hal.archives-ouvertes.fr/hal-02362067
Publikováno v:
the Genetic and Evolutionary Computation Conference Companion
the Genetic and Evolutionary Computation Conference Companion, Jul 2019, Prague, Czech Republic. pp.1928-1936
GECCO (Companion)
the Genetic and Evolutionary Computation Conference Companion, Jul 2019, Prague, Czech Republic. pp.1928-1936
GECCO (Companion)
International audience; Popular machine learning estimators involve regularization parameters that can be challenging to tune, and standard strategies rely on grid search for this task. In this paper, we revisit the techniques of approximating the re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d5a877a1baf40fe865efb9fd3e785c97
https://hal.archives-ouvertes.fr/hal-02269139
https://hal.archives-ouvertes.fr/hal-02269139
Autor:
Olivier Fercoq, Peter Richtárik
Publikováno v:
Modeling and Optimization: Theory and Applications
Modeling and Optimization: Theory and Applications, pp.57-96, 2019, ⟨10.1007/978-3-030-12119-8_4⟩
Springer Proceedings in Mathematics & Statistics ISBN: 9783030121181
Modeling and Optimization: Theory and Applications, pp.57-96, 2019, ⟨10.1007/978-3-030-12119-8_4⟩
Springer Proceedings in Mathematics & Statistics ISBN: 9783030121181
39 pages, 1 algorithm, 3 figures, 2 tables; International audience; We study the performance of a family of randomized parallel coordinate descent methods for minimizing the sum of a nonsmooth and separable convex functions. The problem class include
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e7796c5a9e5b32346908480a7def930d
https://hal.archives-ouvertes.fr/hal-02269142
https://hal.archives-ouvertes.fr/hal-02269142
A Coordinate Descent Primal-Dual Algorithm with Large Step Size and Possibly Non Separable Functions
Autor:
Pascal Bianchi, Olivier Fercoq
Publikováno v:
SIAM Journal on Optimization
SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2019, 29 (1), pp.100-134
SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2019, 29 (1), pp.100-134
This paper introduces a coordinate descent version of the V\~u-Condat algorithm. By coordinate descent, we mean that only a subset of the coordinates of the primal and dual iterates is updated at each iteration, the other coordinates being maintained
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b5a944b87e6c977b50a4b16275c0a7f8
https://hal.archives-ouvertes.fr/hal-01497104
https://hal.archives-ouvertes.fr/hal-01497104
Autor:
Zheng Qu, Olivier Fercoq
Publikováno v:
Computational Optimization and Applications
Computational Optimization and Applications, Springer Verlag, 2018
Computational Optimization and Applications, Springer Verlag, 2018
We propose new restarting strategies for the accelerated coordinate descent method. Our main contribution is to show that for a well chosen sequence of restarting times, the restarted method has a nearly geometric rate of convergence. A major feature
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6262ba86ed95b3d56bd91952edddb196
https://hal.telecom-paris.fr/hal-02287842
https://hal.telecom-paris.fr/hal-02287842
Autor:
Pascal Bianchi, Olivier Fercoq
Publikováno v:
IEEE 55th Conference on Decision and Control (CDC), 2016
IEEE 55th Conference on Decision and Control (CDC)
IEEE 55th Conference on Decision and Control (CDC), Dec 2016, Las Vegas, NV, United States. pp.1895-1899, ⟨10.1109/CDC.2016.7798541⟩
CDC
IEEE 55th Conference on Decision and Control (CDC)
IEEE 55th Conference on Decision and Control (CDC), Dec 2016, Las Vegas, NV, United States. pp.1895-1899, ⟨10.1109/CDC.2016.7798541⟩
CDC
International audience; The Vu-Condat algorithm is a standard method for finding a saddle point of a Lagrangian involving a differentiable function. Recent works have tried to adapt the idea of random coordinate descent to this algorithm, with the ai
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eab72372a3fb88ccf99f722d792db71d
https://hal.archives-ouvertes.fr/hal-01497087/file/cdc.pdf
https://hal.archives-ouvertes.fr/hal-01497087/file/cdc.pdf