Zobrazeno 1 - 10
of 157
pro vyhledávání: '"Oliveros, D."'
Autor:
Andersen, I. M., Wolf, D., Rodriguez, L. A., Lubk, A., Oliveros, D., Bran, C., Niermann, T., Rößler, U. K., Vazquez, M., Gatel, C., Snoeck, E.
Publikováno v:
Phys. Rev. Res. 3, (2021) 033085
Cylindrical magnetic nanowires with large transversal magnetocrystalline anisotropy have been shown to sustain non-trivial magnetic configurations resulting from the interplay of spatial confinement, exchange, and anisotropies. Exploiting these pecul
Externí odkaz:
http://arxiv.org/abs/2107.13201
The family of Directed Acyclic Graphs as well as some related graphs are analyzed with respect to extremal behavior in relation with the family of intersection graphs for families of boxes with transverse intersection.
Comment: 13 pages, 4 figur
Comment: 13 pages, 4 figur
Externí odkaz:
http://arxiv.org/abs/1604.00612
We study $S$-convex sets, which are the geometric objects obtained as the intersection of the usual convex sets in $\mathbb R^d$ with a proper subset $S\subset \mathbb R^d$. We contribute new results about their $S$-Helly numbers. We extend prior wor
Externí odkaz:
http://arxiv.org/abs/1508.02380
The scenario approach developed by Calafiore and Campi to attack chance-constrained convex programs utilizes random sampling on the uncertainty parameter to substitute the original problem with a representative continuous convex optimization with $N$
Externí odkaz:
http://arxiv.org/abs/1504.00076
The main purpose of this paper is to study extremal results on the intersection graphs of boxes in $\R^d$. We calculate exactly the maximal number of intersecting pairs in a family $\F$ of $n$ boxes in $\R^d$ with the property that no $k+1$ boxes in
Externí odkaz:
http://arxiv.org/abs/1412.8190
Publikováno v:
Computational Geometry: Theory and Applications 48 (2015), no. 3, 221-224
Let $\mathcal{F}$ be a family of $n$ axis-parallel boxes in $\mathbb{R}^d$ and $\alpha\in (1-1/d,1]$ a real number. There exists a real number $\beta(\alpha )>0$ such that if there are $\alpha {n\choose 2}$ intersecting pairs in $\mathcal{F}$, then $
Externí odkaz:
http://arxiv.org/abs/1410.0467
Autor:
Martínez-Pérez, A., Oliveros, D.
A Roman domination function on a graph G is a function $r:V(G)\to \{0,1,2\}$ satisfying the condition that every vertex $u$ for which $r(u)=0$ is adjacent to at least one vertex $v$ for which $r(v)=2$. The weight of a Roman function is the value $r(V
Externí odkaz:
http://arxiv.org/abs/1311.4476
Publikováno v:
In Discrete Mathematics 6 November 2016 339(11):2812-2818
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Discrete Mathematics 6 December 2015 338(12):2545-2548