Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Oliver Korten"'
Autor:
Hugo A. Akitaya, Matthew D. Jones, Matias Korman, Oliver Korten, Christopher Meierfrankenfeld, Michael J. Munje, Diane L. Souvaine, Michael Thramann, Csaba D. Tóth
Publikováno v:
Journal of Graph Theory. 102:35-66
Publikováno v:
Theoretical Computer Science. 923:13-26
Motivated by applications in gerrymandering detection, we study a reconfiguration problem on connected partitions of a connected graph $G$. A partition of $V(G)$ is \emph{connected} if every part induces a connected subgraph. In many applications, it
Autor:
Hugo A. Akitaya, Matias Korman, Oliver Korten, Mikhail Rudoy, Diane L. Souvaine, Csaba D. Tóth
Publikováno v:
Discrete & Computational Geometry. 68:218-254
Given a planar straight-line graph $G=(V,E)$ in $\mathbb{R}^2$, a \emph{circumscribing polygon} of $G$ is a simple polygon $P$ whose vertex set is $V$, and every edge in $E$ is either an edge or an internal diagonal of $P$. A circumscribing polygon i
Autor:
Lily Chung, Dylan H. Hendrickson, Jeffrey Bosboom, Michael J. Coulombe, Erik D. Demaine, Zhezheng Luo, William Hu, Calvin Hsu, Lillian Zhang, Oliver Korten, Spencer Compton, Adam Hesterberg, Martin L. Demaine, Ivan Tadeu Ferreira Antunes Filho, Charlotte Chen
Publikováno v:
Journal of Information Processing. 28:987-1007
We analyze the computational complexity of several new variants of edge-matching puzzles. First we analyze inequality (instead of equality) constraints between adjacent tiles, proving the problem NP-complete for strict inequalities but polynomial for
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030752415
CIAC
CIAC
Motivated by applications in gerrymandering detection, we study a reconfiguration problem on connected partitions of a connected graph G. A partition of V(G) is connected if every part induces a connected subgraph. In many applications, it is desirab
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f2d0314539d956ad4bf6efb0f1a89e52
https://doi.org/10.1007/978-3-030-75242-2_4
https://doi.org/10.1007/978-3-030-75242-2_4