Zobrazeno 1 - 10
of 99
pro vyhledávání: '"Oliver, Tomic"'
Autor:
Bao Ngoc Huynh, Aurora Rosvoll Groendahl, Oliver Tomic, Kristian Hovde Liland, Ingerid Skjei Knudtsen, Frank Hoebers, Wouter van Elmpt, Eirik Malinen, Einar Dale, Cecilia Marie Futsaether
Publikováno v:
Frontiers in Medicine, Vol 11 (2024)
Externí odkaz:
https://doaj.org/article/5f7993b1493347169ad135f2cb55e9be
Autor:
Bao Ngoc Huynh, Aurora Rosvoll Groendahl, Oliver Tomic, Kristian Hovde Liland, Ingerid Skjei Knudtsen, Frank Hoebers, Wouter van Elmpt, Eirik Malinen, Einar Dale, Cecilia Marie Futsaether
Publikováno v:
Frontiers in Medicine, Vol 10 (2023)
BackgroundRadiomics can provide in-depth characterization of cancers for treatment outcome prediction. Conventional radiomics rely on extraction of image features within a pre-defined image region of interest (ROI) which are typically fed to a classi
Externí odkaz:
https://doaj.org/article/98c5fb5aa2e64383add695426b9655ea
Autor:
Aurora Rosvoll Groendahl, Bao Ngoc Huynh, Oliver Tomic, Åste Søvik, Einar Dale, Eirik Malinen, Hege Kippenes Skogmo, Cecilia Marie Futsaether
Publikováno v:
Frontiers in Veterinary Science, Vol 10 (2023)
BackgroundRadiotherapy (RT) is increasingly being used on dogs with spontaneous head and neck cancer (HNC), which account for a large percentage of veterinary patients treated with RT. Accurate definition of the gross tumor volume (GTV) is a vital pa
Externí odkaz:
https://doaj.org/article/ed5a8a1442144238a84f82b51d2a98de
Autor:
Anna Jenul, Stefan Schrunner, Kristian Hovde Liland, Ulf Geir Indahl, Cecilia Marie Futsaether, Oliver Tomic
Publikováno v:
IEEE Access, Vol 9, Pp 152333-152346 (2021)
Feature selection is an essential step in data science pipelines to reduce the complexity associated with large datasets. While much research on this topic focuses on optimizing predictive performance, few studies investigate stability in the context
Externí odkaz:
https://doaj.org/article/5b1acb3b57a54811ba6a16ee486dffd9
Autor:
Bettina Hanekamp, Cecilia M. Futsaether, Christine Kiran Kaushal, Oliver Tomic, Aurora Rosvoll Groendahl, Eivor Hernes, Bao Ngoc Huynh, Yngve Mardal Moe, Eirik Malinen, Marianne Grønlie Guren, Christine Undseth, Espen Rusten
Publikováno v:
Acta Oncologica. 61:89-96
Background Accurate target volume delineation is a prerequisite for high-precision radiotherapy. However, manual delineation is resource-demanding and prone to interobserver variation. An automatic delineation approach could potentially save time and
Autor:
Anna Jenul, Bimal Bhattarai, Kristian Hovde Liland, Lei Jiao, Stefan Schrunner, Cecilia Futsaether, Ole-Christoffer Granmo, Oliver Tomic
Publikováno v:
2022 International Symposium on the Tsetlin Machine (ISTM).
Autor:
Einar Dale, Yngve Mardal Moe, Oliver Tomic, B.N. Huynh, Aurora Rosvoll Groendahl, Eirik Malinen, Cecilia M. Futsaether
Publikováno v:
Radiotherapy and Oncology. 161:S1374-S1376
Autor:
Jintao Ren, Bao-Ngoc Huynh, Aurora Rosvoll Groendahl, Oliver Tomic, Cecilia Marie Futsaether, Stine Sofia Korreman
Publikováno v:
Ren, J, Huynh, B-N, Groendahl, A R, Tomic, O, Futsaether, C M & Korreman, S S 2022, PET Normalizations to Improve Deep Learning Auto-Segmentation of Head and Neck Tumors in 3D PET/CT . in 3D Head and Neck Tumor Segmentation in PET/CT Challenge : Second Challenge, HECKTOR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings . Springer, Cham, Lecture Notes in Computer Science, vol. 13209, pp. 83-91 . https://doi.org/10.1007/978-3-030-98253-9_7
Lecture Notes in Computer Science ISBN: 9783030982522
Lecture Notes in Computer Science ISBN: 9783030982522
Auto-segmentation of head and neck cancer (HNC) primary gross tumor volume (GTVt) is a necessary but challenging process for radiotherapy treatment planning and radiomics studies. The HEad and neCK TumOR Segmentation Challenge (HECKTOR) 2021 comprise
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7a140ce2e5dadb098dd7b4d133aae4f9
https://pure.au.dk/portal/da/publications/pet-normalizations-to-improve-deep-learning-autosegmentation-of-head-and-neck-tumors-in-3d-petct(e5af1a6e-aab3-40b8-9f68-35df9c0eacd4).html
https://pure.au.dk/portal/da/publications/pet-normalizations-to-improve-deep-learning-autosegmentation-of-head-and-neck-tumors-in-3d-petct(e5af1a6e-aab3-40b8-9f68-35df9c0eacd4).html
Autor:
Anna Jenul, Stefan Schrunner, Bao Ngoc Huynh, Runar Helin, Cecilia Marie Futsæther, Kristian Hovde Liland, Oliver Tomic
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031159367
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e571dc717e9d085d0fd9137a9dea536b
https://doi.org/10.1007/978-3-031-15937-4_14
https://doi.org/10.1007/978-3-031-15937-4_14