Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Oliveira, Carla Silva"'
Autor:
Junior, Joao Domingos Gomes da Silva, Oliveira, Carla Silva, da Costa, Liliana Manuela Gaspar C.
Let $G$ be a simple graph with adjacency matrix $A(G)$, signless Laplacian matrix $Q(G)$, degree diagonal matrix $D(G)$ and let $l(G)$ be the line graph of $G$. In 2017, Nikiforov defined the $A_\alpha$-matrix of $G$, $A_\alpha(G)$, as a linear conve
Externí odkaz:
http://arxiv.org/abs/2402.15470
Let G be a graph with adjacency matrix A(G) and degree diagonal matrix D(G). In 2017, Nikiforov [1] defined the matrix Aalpha(G), as a convex combination of A(G) and D(G), the following way, Aalpha(G) = alpha A(G) + (1 - alpha)D(G), where alpha belon
Externí odkaz:
http://arxiv.org/abs/2301.02733
The operability of a network concerns its ability to remain operational, despite possible failures in its links or equipment. One may model the network through a graph to evaluate and increase this operability. Its vertices and edges correspond to th
Externí odkaz:
http://arxiv.org/abs/2211.08514
Let G be a graph of order $n$ with adjacency matrix $A(G)$ and diagonal matrix of degree $D(G)$. For every $\alpha \in [0,1]$, Nikiforov \cite{VN17} defined the matrix $A_\alpha(G) = \alpha D(G) + (1-\alpha)A(G)$. In this paper we present the $A_{\al
Externí odkaz:
http://arxiv.org/abs/2208.10557
Publikováno v:
Special Matrices, Vol 12, Iss 1, Pp 23-14 (2024)
Let GG be a simple graph with adjacency matrix A(G)A\left(G), degree diagonal matrix D(G),D\left(G), and let l(G)l\left(G) be the line graph of GG. In 2017, Nikiforov defined the Aα{A}_{\alpha }-matrix of GG, Aα(G){A}_{\alpha }\left(G), as a linear
Externí odkaz:
https://doaj.org/article/5261baac5a2147cc9cf118cc91d70183
Let $G=(V,E)$ be a simple undirected and connected graph on $n$ vertices. The Graovac--Ghorbani index of a graph $G$ is defined as $$ABC_{GG}(G)= \sum_{uv \in E(G)} \sqrt{\frac{n_{u}+n_{v}-2} {n_{u} n_{v}}},$$ where $n_u$ is the number of vertices cl
Externí odkaz:
http://arxiv.org/abs/2005.02141
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Linear Algebra and Its Applications 1 April 2021 614:144-163
Let G be a simple graph on $n$ vertices and $e(G)$ edges. Consider $Q(G) = D + A$ as the signless Laplacian of $G$, where $A$ is the adjacency matrix and $D$ is the diagonal matrix of the vertices degree of $G$. Let $q_1(G)$ and $q_2(G)$ be the first
Externí odkaz:
http://arxiv.org/abs/1310.8559
Autor:
Abreu, Nair Maria Maia de, Justel, Claudia Marcela, Markenzon, Lilian, Oliveira, Carla Silva, Waga, Christina Fraga Esteves Maciel
Publikováno v:
In Discrete Applied Mathematics 30 September 2019 269:60-67