Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Oleg Wilfer"'
Autor:
Oleg Wilfer
Oleg Wilfer presents a new conjugate duality concept for geometric and cone constrained optimization problems whose objective functions are a composition of finitely many functions. As an application, the author derives results for single minmax loca
Autor:
Oleg Wilfer
Publikováno v:
Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics ISBN: 9783658305796
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::dbaa9cd272f2447a15d7d370abfe8251
https://doi.org/10.1007/978-3-658-30580-2_1
https://doi.org/10.1007/978-3-658-30580-2_1
Autor:
Oleg Wilfer
Publikováno v:
Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics ISBN: 9783658305796
In the recent years, location problems attracted a considerable attention in the scientific community and a large number of papers studying minsum and minmax location problems have been published (see [23, 26, 38–41, 43, 45, 49, 50, 57, 66, 68–70
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c2cace4ea7466189deb8f093d54b39f1
https://doi.org/10.1007/978-3-658-30580-2_4
https://doi.org/10.1007/978-3-658-30580-2_4
Autor:
Oleg Wilfer
Publikováno v:
Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics ISBN: 9783658305796
This chapter serves as an introduction and aims to make this book as self-contained as possible. We introduce here basic notions from the convex analysis and give important statements on convex sets, convex scalar and vector functions. For readers in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::09586f49bec7a0b58f78e2ec0b237b07
https://doi.org/10.1007/978-3-658-30580-2_2
https://doi.org/10.1007/978-3-658-30580-2_2
Autor:
Oleg Wilfer
Publikováno v:
Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics ISBN: 9783658305796
For solving minmax location problems in Hilbert spaces Hi, i = 1, …, n, numerically by proximal methods we present in this chapter first a general formula of the projection onto the epigraph of the function h : H1 × … × Hn → ℝ, defined by \
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6a0fcd9eecde2b7bd44696be5d2f6531
https://doi.org/10.1007/978-3-658-30580-2_5
https://doi.org/10.1007/978-3-658-30580-2_5
Autor:
Oleg Wilfer
Publikováno v:
Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics ISBN: 9783658305796
The goal of this chapter is to consider an optimization problem with geometric and cone constraints, whose objective function is a composition of n + 1 functions and to deliver a full duality approach for this type of problems.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3584318a7f6c4484a9751eec3ea805cf
https://doi.org/10.1007/978-3-658-30580-2_3
https://doi.org/10.1007/978-3-658-30580-2_3
Autor:
Gert Wanka, Oleg Wilfer
Publikováno v:
Optimization. 67:1095-1119
Duality statements are presented for multifacility location problems as suggested by Drezner Hiu 1991, where for each given point the sum of weighted distances to all facilities plus set-up costs i...
Autor:
Gert Wanka, Oleg Wilfer
Publikováno v:
Mathematical Methods of Operations Research. 86:401-439
In the framework of conjugate duality we discuss nonlinear and linear single minimax location problems with geometric constraints, where the gauges are defined by convex sets of a Frechet space. The version of the nonlinear location problem is additi
Autor:
Gert Wanka, Oleg Wilfer
Publikováno v:
TOP. 25:288-313
In this paper, we consider an optimization problem with geometric and cone constraints, whose objective function is a composition of $$n+1$$ functions. For this problem, we calculate its conjugate dual problem, where the functions involved in the obj
Publikováno v:
Optimization, Simulation, and Control ISBN: 9781461451303
This paper aims to extend some results dealing with gap functions for vector variational inequalities from the literature by using the so-called oriented distance function.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1ba5ed7ead14f929b4ae0d349c8ed6bb
https://doi.org/10.1007/978-1-4614-5131-0_2
https://doi.org/10.1007/978-1-4614-5131-0_2