Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Oleg I. Klesov"'
Publikováno v:
Наукові вісті Національного технічного університету України "Київський політехнічний інститут", Vol 0, Iss 4, Pp 61-65 (2017)
Background. Asymptotic behavior at infinity of non-autonomous stochastic differential equation solutions is studied in the paper. Objective. The aim of the work is to find sufficient conditions for the strong law of large numbers for a random proce
Externí odkaz:
https://doaj.org/article/e5edc8d8b3c44e99a487537d50b31a0d
Publikováno v:
Mathematics in Modern Technical University. 2019:25-37
Autor:
Josef Steinebach, Oleg I. Klesov
Publikováno v:
Mathematics in Modern Technical University. 2018:5-10
Some comments concerning the origin of the (R–O) notion for real functions are given, which has been used in the paper above, but was first introduced by Avakumović (1935). Moreover, some later extensions and generalizations of such functions are
Autor:
Oleg I. Klesov, Ilya Molchanov
Publikováno v:
Statistics & Probability Letters. 131:56-63
The validity of the strong law of large numbers for multiple sums S n of independent identically distributed random variables Z k , k ≤ n , with r -dimensional indices is equivalent to the integrability of | Z | ( log + | Z | ) r − 1 , where Z is
Publikováno v:
Наукові вісті Національного технічного університету України "Київський політехнічний інститут", Vol 0, Iss 4, Pp 61-65 (2017)
Background. Asymptotic behavior at infinity of non-autonomous stochastic differential equation solutions is studied in the paper. Objective. The aim of the work is to find sufficient conditions for the strong law of large numbers for a random process
Autor:
Oleg I. Klesov, Josef Steinebach
Publikováno v:
Journal of Mathematical Analysis and Applications. 486:123916
Suppose that, for two given sequences { a n } and { b n } , lim inf n → ∞ b n a n = 1 and let a function f be given. What can then be said about the limit behavior of the corresponding ratio f ( b n ) f ( a n ) as n → ∞ ? In general, no defin
Autor:
Olena A. Tymoshenko, Oleg I. Klesov
Publikováno v:
Understanding Complex Systems ISBN: 9783319967547
We study non-homogeneous stochastic differential equation with separation of stochastic and deterministic variables. We express the asymptotic behavior of solutions of such equations in terms of that for the corresponding ordinary differential equati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::69ac662725e435873a0f2972d368da4e
https://doi.org/10.1007/978-3-319-96755-4_6
https://doi.org/10.1007/978-3-319-96755-4_6
Autor:
Oleg I. Klesov, Ilya Molchanov
Publikováno v:
Understanding Complex Systems ISBN: 9783319967547
We prove a strong law of large numbers for random signed measures on Euclidean space that holds uniformly over a family of arguments (sets) scaled by diagonal matrices. Applications to random measures generated by sums of random variables, marked poi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2fe068187d29adee5379054c6d0abd00
https://doi.org/10.1007/978-3-319-96755-4_18
https://doi.org/10.1007/978-3-319-96755-4_18
Publikováno v:
Probability Theory and Stochastic Modelling ISBN: 9783319995366
Consider some renewal sequence, that is, a sequence of partial sums {Sn}n≥0 of independent identically distributed random variables {Xn}n≥1. Our aim in this chapter is to show that various functionals of partial sums and corresponding renewal pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e4c5584d1bb93d8337ee09bff2308134
https://doi.org/10.1007/978-3-319-99537-3_2
https://doi.org/10.1007/978-3-319-99537-3_2
Publikováno v:
Probability Theory and Stochastic Modelling ISBN: 9783319995366
The defining property of an ORV-function f is that \(f\in \mathbb {{F}}_{+}\) is measurable and the upper limit function exists and is positive and finite (see Definition 3.7). The main aim of this chapter is to study a subclass of functions in ORV w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::beadaa588586923d1a9095c64169634b
https://doi.org/10.1007/978-3-319-99537-3_5
https://doi.org/10.1007/978-3-319-99537-3_5