Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Ole Vignes"'
Autor:
Sigurdur Thorsteinsson, Tomas Wilhelmsson, Ole Vignes, Magnus Lindskog, Kristian Mogensen, Xiaohua Yang, Xiang-Yu Huang, Nils Gustafsson
Publikováno v:
Tellus: Series A, Dynamic Meteorology and Oceanography, Vol 64, Iss 0, Pp 1-29 (2012)
A 4-dimensional variational data assimilation (4D-Var) scheme for the HIgh Resolution Limited Area Model (HIRLAM) forecasting system is described in this article. The innovative approaches to the multi-incremental formulation, the weak digital filter
Externí odkaz:
https://doaj.org/article/b4ede5707e924360a5642092f5acd4ea
Autor:
Mariken Homleid, Dag Bjørge, Per Dahlgren, Ulf Andrae, Knut Helge Midtbø, Roger Randriamampianina, Trygve Aspelien, Malte Müller, Morten Køltzow, Karl-Ivar Ivarsson, Ole Vignes, Martin Ridal, Jørn Kristiansen, Lars Berggren, Magnus Lindskog
Publikováno v:
Weather and Forecasting. 32:609-627
Since October 2013 a convective-scale weather prediction model has been used operationally to provide short-term forecasts covering large parts of the Nordic region. The model is now operated by a bilateral cooperative effort [Meteorological Cooperat
Autor:
Sibbo van der Veen, Ulf Andrae, Janne Kauhanen, Geert Smet, Jelena Bojarova, Alfons Callado, Inger-Lise Frogner, Andrew Singleton, Roger Randriamampianina, Alan Hally, Henrik Feddersen, Pau Escribà, Ole Vignes
Publikováno v:
ARCIMIS. Archivo Climatológico y Meteorológico Institucional (AEMET)
Agencia Estatal de Meteorología (AEMET)
Agencia Estatal de Meteorología (AEMET)
HarmonEPS is the limited-area, short-range, convection-permitting ensemble prediction system developed and maintained by the HIRLAM consortium as part of the shared ALADIN–HIRLAM system. HarmonEPS is the ensemble realization of HARMONIE–AROME, us
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d31b79f07785db0d07bdd9e39194dc99
http://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-5490
http://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-5490
Publikováno v:
Weather and Forecasting. 31:1833-1851
Three ensemble prediction systems (EPSs) with different grid spacings are compared and evaluated with respect to their ability to predict wintertime weather in complex terrain. The experiment period was two-and-a-half winter months in 2014, coincidin
Publikováno v:
Nonlinear Processes in Geophysics, Vol 21, Iss 1, Pp 303-323 (2014)
A hybrid variational ensemble data assimilation has been developed on top of the HIRLAM variational data assimilation. It provides the possibility of applying a flow-dependent background error covariance model during the data assimilation at the same