Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Ole Fredrik Brevig"'
Publikováno v:
Geometric and Functional Analysis
Dipòsit Digital de la UB
Universidad de Barcelona
Dipòsit Digital de la UB
Universidad de Barcelona
We describe the idempotent Fourier multipliers that act contractively on $H^p$ spaces of the $d$-dimensional torus $\mathbb{T}^d$ for $d\geq 1$ and $1\leq p \leq \infty$. When $p$ is not an even integer, such multipliers are just restrictions of cont
Autor:
Ole Fredrik Brevig, Kristian Seip
A Hankel operator $\mathbf{H}_\varphi$ on the Hardy space $H^2$ of the unit circle with analytic symbol $\varphi$ has minimal norm if $\|\mathbf{H}_\varphi\|=\|\varphi \|_2$ and maximal norm if $\|\mathbf{H}_\varphi\| = \|\varphi\|_\infty$. The Hanke
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::278406e6fb7666b1ca256dad1e033855
http://arxiv.org/abs/2301.07937
http://arxiv.org/abs/2301.07937
Autor:
Ole Fredrik Brevig, Eero Saksman
Publikováno v:
Proceedings of the American Mathematical Society. 148:3911-3924
Let C ( k , p ) C(k,p) denote the smallest real number such that the estimate | a k | ≤ C ( k , p ) ‖ f ‖ H p |a_k|\leq C(k,p)\|f\|_{H^p} holds for every f ( z ) = ∑ n ≥ 0 a n z n f(z)=\sum _{n\geq 0}a_n z^n in the H p H^p space of the unit
Publikováno v:
Journal of Geometric Analysis
There is a bounded Hankel operator on the Paley--Wiener space of a disc in $\mathbb{R}^2$ which does not arise from a bounded symbol.
Comment: This paper has been accepted for publication in Journal of Geometric Analysis
Comment: This paper has been accepted for publication in Journal of Geometric Analysis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e9ae8324082c74ad7c20850911fee91
Autor:
Ole Fredrik Brevig, Winston Heap
Publikováno v:
Journal of Number Theory
The pseudomoments of the Riemann zeta function, denoted $\mathcal{M}_k(N)$, are defined as the $2k$th integral moments of the $N$th partial sum of $\zeta(s)$ on the critical line. We improve the upper and lower bounds for the constants in the estimat
Publikováno v:
Journal of Functional Analysis
Let $\mathscr{H}^2$ denote the Hilbert space of Dirichlet series with square-summable coefficients. We study composition operators $\mathscr{C}_\varphi$ on $\mathscr{H}^2$ which are generated by symbols of the form $\varphi(s) = c_0s + \sum_{n\geq1}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b4251bcb01a46ead8191774f6c7c2bec
Autor:
Ole Fredrik Brevig, Nazar Miheisi
Publikováno v:
Studia Mathematica
A Helson matrix is an infinite matrix $A = (a_{m,n})_{m,n\geq1}$ such that the entry $a_{m,n}$ depends only on the product $mn$. We demonstrate that the orthogonal projection from the Hilbert--Schmidt class $\mathcal{S}_2$ onto the subspace of Hilber
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1b7a18b49d06e0c84933694ad5bf79a4
http://hdl.handle.net/10852/80560
http://hdl.handle.net/10852/80560
Publikováno v:
Journal of Mathematical Analysis and Applications
Dipòsit Digital de la UB
Universidad de Barcelona
Dipòsit Digital de la UB
Universidad de Barcelona
A sharp version of a recent inequality of Kovalev and Yang on the ratio of the $(H^1)^\ast$ and $H^4$ norms for certain polynomials is obtained. The inequality is applied to establish a sharp and tractable sufficient condition for the Wirtinger deriv
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8de32983e46cb107323172f4547e9696
https://hdl.handle.net/11250/2722488
https://hdl.handle.net/11250/2722488
Autor:
Ole Fredrik Brevig, Frédéric Bayart
Publikováno v:
Mathematische Zeitschrift. 293:989-1014
We observe that local embedding problems for certain Hardy and Bergman spaces of Dirichlet series are equivalent to boundedness of a class of composition operators. Following this, we perform a careful study of such composition operators generated by
Publikováno v:
Transactions of the American Mathematical Society
Dipòsit Digital de la UB
Universidad de Barcelona
Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de la UB
Universidad de Barcelona
Recercat. Dipósit de la Recerca de Catalunya
instname
We consider sharp inequalities for Bergman spaces of the unit disc, establishing analogues of the inequality in Carleman's proof of the isoperimetric inequality and of Weissler's inequality for dilations. By contractivity and a standard tensorization