Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Oldřich Kodym"'
Autor:
Oldřich Kodym, Jianning Li, Antonio Pepe, Christina Gsaxner, Sasank Chilamkurthy, Jan Egger, Michal Španěl
Publikováno v:
Data in Brief, Vol 35, Iss , Pp 106902- (2021)
The article introduces two complementary datasets intended for the development of data-driven solutions for cranial implant design, which remains to be a time-consuming and laborious task in current clinical routine of cranioplasty. The two datasets,
Externí odkaz:
https://doaj.org/article/69cab2db2def4525b0abad1b4dbdad41
Autor:
Oldřich Kodym, Michal Hradis
Publikováno v:
International Journal on Document Analysis and Recognition (IJDAR). 25:15-28
Most image enhancement methods focused on restoration of digitized textual documents are limited to cases where the text information is still preserved in the input image, which may often not be the case. In this work, we propose a novel generative d
Publikováno v:
Open Engineering, Vol 10, Iss 1, Pp 74-85 (2020)
Currently we are saying that we are at the dawn of the fourth revolution, which is marked by using cyberphysical systems and the Internet of Things. This is marked as Industry 4.0 (I4.0). With Industry 4.0 is also closely linked concept Logistics 4.0
Autor:
Ute Schäfer, Gord von Campe, Yuan Jin, Hans Lamecker, Bomin Wang, Michal Spanel, Christian Doenitz, Heiko Ramm, Ulrike Zefferer, Matthias Josef Eder, Pedro Pimentel, Angelika Szengel, Adam Herout, Victor Alves, Oldřich Kodym, Franco Matzkin, Jan Egger, Moritz Ehlke, Zachary Fishman, James G. Mainprize, Ben Glocker, Stefan Zachow, Jianning Li, Virginia F. J. Newcombe, David G. Ellis, Dieter Schmalstieg, Haochen Shi, Enzo Ferrante, Karin Pistracher, Zhi Liu, Antonio Pepe, Bjoern H. Menze, Michele R. Aizenberg, Amirhossein Bayat, Christina Gsaxner, Suprosanna Shit, Michael Hardisty, Laura Estacio, Xiaojun Chen
Publikováno v:
IEEE transactions on medical imaging. 40(9)
The aim of this paper is to provide a comprehensive overview of the MICCAI 2020 AutoImplant Challenge. The approaches and publications submitted and accepted within the challenge will be summarized and reported, highlighting common algorithmic trends
Publikováno v:
Towards the Automatization of Cranial Implant Design in Cranioplasty II ISBN: 9783030926519
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5114d2387ec885b9d9d492e079c021a1
https://doi.org/10.1007/978-3-030-92652-6_3
https://doi.org/10.1007/978-3-030-92652-6_3
Autor:
Michal Hradis, Oldřich Kodym
Publikováno v:
Document Analysis and Recognition – ICDAR 2021 ISBN: 9783030863302
ICDAR (2)
ICDAR (2)
Extraction of text regions and individual text lines from historic documents is necessary for automatic transcription. We propose extending a CNN-based text baseline detection system by adding line height and text block boundary predictions to the mo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1e13b999910347325c09e514036db44a
https://doi.org/10.1007/978-3-030-86331-9_32
https://doi.org/10.1007/978-3-030-86331-9_32
Autor:
Oldřich Kodym
Publikováno v:
Mine Planning and Equipment Selection 1997 ISBN: 9781003078166
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fc5902d45b5fd22947f4deadcce6cf93
https://doi.org/10.1201/9781003078166-128
https://doi.org/10.1201/9781003078166-128
Publikováno v:
Towards the Automatization of Cranial Implant Design in Cranioplasty ISBN: 9783030643263
AutoImplant@MICCAI
AutoImplant@MICCAI
Designing a patient-specific cranial implant usually requires reconstructing the defective part of the skull using computer-aided design software, which is a tedious and time-demanding task. This lead to some recent advances in the field of automatic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::91ed53009da3e8a87b95acdec336f24b
https://doi.org/10.1007/978-3-030-64327-0_7
https://doi.org/10.1007/978-3-030-64327-0_7
Publikováno v:
Computers in Biology and Medicine. 137:104766
Correct virtual reconstruction of a defective skull is a prerequisite for successful cranioplasty and its automatization has the potential for accelerating and standardizing the clinical workflow. This work provides a deep learning-based method for t