Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Olaf M. Schnürer"'
Publikováno v:
Moscow Mathematical Journal. 20:277-309
We prove smoothness in the dg sense of the bounded derived category of finitely generated modules over any finite-dimensional algebra over a perfect field, hereby answering a question of Iyama. More generally, we prove this statement for any algebra
Autor:
Olaf M. Schnürer, Leonid Positselski
Consider the obvious functor from the unbounded derived category of all finitely generated modules over a left noetherian ring $R$ to the unbounded derived category of all modules. We answer the natural question whether this functor defines an equiva
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7f4b2f23085829459cacb4c8bd388cdf
Autor:
Daniel Bergh, Olaf M. Schnürer
Publikováno v:
Bergh, D S T & Schnürer, O M 2021, ' Decompositions of derived categories of gerbes and of families of Brauer-Severi varieties ', Documenta Mathematica, vol. 26, pp. 1465-1500 . https://doi.org/10.25537/dm.2021v26.1465-1500
Documenta Mathematica
Documenta Mathematica
It is well known that the category of quasi-coherent sheaves on a gerbe banded by a diagonalizable group decomposes according to the characters of the group. We establish the corresponding decomposition of the unbounded derived category of complexes
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6903e55224154b5529b00d2b9f17bf8e
Publikováno v:
Selecta Mathematica. New Series
We prove that the dg category of perfect complexes on a smooth, proper Deligne-Mumford stack over a field of characteristic zero is geometric in the sense of Orlov, and in particular smooth and proper. On the level of triangulated categories, this me
Autor:
Daniel Bergh, Olaf M. Schnürer
Publikováno v:
Bergh, D & Schnürer, O M 2020, ' Conservative descent for semi-orthogonal decompositions ', Advances in Mathematics, vol. 360, 106882 . https://doi.org/10.1016/j.aim.2019.106882
Advances in Mathematics
Advances in Mathematics
Motivated by the local flavor of several well-known semi-orthogonal decompositions in algebraic geometry, we introduce a technique called conservative descent, which shows that it is enough to establish these decompositions locally. The decomposition
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::99c0c6643290b022c53fd1a68373f78e
http://arxiv.org/abs/1712.06845
http://arxiv.org/abs/1712.06845
Autor:
Olaf M. Schnürer
Publikováno v:
Trends in Mathematics ISBN: 9783319454405
We lift Grothendieck’s six functor formalism for derived categories of sheaves on ringed spaces over a field to differential graded enhancements. Two applications concerning homological smoothness of derived categories of schemes are given.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e0c21a6c621de4adc21c1d1a6ab72d58
https://doi.org/10.1007/978-3-319-45441-2_24
https://doi.org/10.1007/978-3-319-45441-2_24
Autor:
Olaf M. Schnürer
We lift Grothendieck-Verdier-Spaltenstein's six functor formalism for derived categories of sheaves on ringed spaces over a field to differential graded enhancements. Our main tools come from enriched model category theory.
106 pages, small impr
106 pages, small impr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::376be0be24ab707a2d560038dc843547
http://arxiv.org/abs/1507.08697
http://arxiv.org/abs/1507.08697
Autor:
Valery A. Lunts, Olaf M. Schnürer
We show that the motivic vanishing cycles introduced by J. Denef and F. Loeser give rise to a motivic measure on the Grothendieck ring of varieties over the affine line. We discuss the relation of this motivic measure to the motivic measure we constr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a94a181dcd29a6b83455351a38acbe26
Autor:
Olaf M. Schnürer, Valery A. Lunts
We introduce new enhancements for the bounded derived category $D^b(Coh(X))$ of coherent sheaves on a suitable scheme $X$ and for its subcategory $Perf(X)$ of perfect complexes. They are used for translating Fourier-Mukai functors to functors between
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fcb1f2150c4dee1faa762c33d1804a9a
http://arxiv.org/abs/1406.7559
http://arxiv.org/abs/1406.7559
Autor:
Olaf M. Schnürer, Wolfgang Soergel
We introduce and study the notion of a locally proper map between topological spaces. We show that fundamental constructions of sheaf theory, more precisely proper base change, projection formula, and Verdier duality, can be extended from continuous
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4bcc6b803d939f27152ddd3db9c46ee5