Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Oksana E. Bezrukova"'
Autor:
Sergei D. Kirik, Alexandr S. Samoilo, Yulia N. Zaitseva, Aleksandr N. Zaloga, Oksana E. Bezrukova, Peter S. Dubinin, Igor S. Yakimov
Publikováno v:
Journal of Solid State Chemistry. 319:123825
Publikováno v:
Tsvetnye Metally. :56-62
Autor:
Petr S. Dubinin, Igor S. Yakimov, Alexander N. Zaloga, Vladimir Stanovov, Oksana E. Bezrukova
Publikováno v:
Journal of Siberian Federal University. Chemistry. :188-200
Some possibilities of using convolutional artificial neural networks (ANN) for powder diffraction structural analysis of crystalline substances have been investigated. First, ANNs are used to classify crystalline systems and space groups according to
Publikováno v:
Spectrochimica Acta Part B: Atomic Spectroscopy. 152:52-58
The efficiency of aluminum smelting cells relies on control in maintaining different cell's parameters, including bath chemistry. In industry, X-ray diffraction analysis is normally used to control the primary characteristic of bath chemistry, namely
Autor:
Sergey V. Burakov, Igor S. Yakimov, Aleksandr Zaloga, P. S. Dubinin, Oksana E. Bezrukova, Konstantin A. Gusev, M. E. Semenkina
Publikováno v:
Industrial laboratory. Diagnostics of materials. 84:25-31
We developed a self configuring genetic algorithm to quantify phase concentrations in a crystalline sample from powder X-ray diffraction data. The algorithm does not require the fine-tuning of parameters, which is inherent to most evolutionary algori
Autor:
Igor S. Yakimov, Alexander N. Zaloga, Oksana E. Bezrukova, Vladimir Stanovov, Petr S. Dubinin
Publikováno v:
Materials Today Communications. 25:101662
A convolutional artificial neural network was applied to identify crystal systems and symmetry space groups by full-profile X-ray diffraction patterns calculated from crystal structures of the ICSD 2017 database. The database contains 192 004 crystal