Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Okonek, Ch."'
We construct an obstruction theory for relative Hilbert schemes in the sense of Behrend-Fantechi and compute it explicitly for relative Hilbert schemes of divisors on smooth projective varieties. In the special case of curves on a surface V, our obst
Externí odkaz:
http://arxiv.org/abs/math/0408131
Autor:
Duerr, M., Okonek, Ch.
In [DKO] we constructed virtual fundamental classes $[[ Hilb^m_V ]]$ for Hilbert schemes of divisors of topological type m on a surface V, and used these classes to define the Poincare invariant of V: (P^+_V,P^-_V): H^2(V,Z) --> \Lambda^* H^1(V,Z) x
Externí odkaz:
http://arxiv.org/abs/math/0408130
Autor:
Okonek, Ch., Teleman, A.
In general, a Kobayashi-Hitchin correspondence establishes an isomorphism between a moduli space of stable algebraic geometric objects and a moduli space of solutions of a certain (generalized) Hermite-Einstein equation. We believe that, for a large
Externí odkaz:
http://arxiv.org/abs/math/0205137
Autor:
Okonek, Ch., Teleman, A.
Let $(F,J,\omega)$ be an almost K\"ahler manifold, $\alpha$ a $J$-holomorphic action of a compact Lie group $\hat K$ on $F$, and $K$ a closed normal subgroup of $\hat K$ which leaves $\omega$ invariant. We introduce gauge theoretical invariants for s
Externí odkaz:
http://arxiv.org/abs/math/0102119
Autor:
Okonek, Ch., Teleman, A.
We present the simplest non-abelian version of Seiberg-Witten theory: Quaternionic monopoles. These monopoles are associated with Spin^h(4)-structures on 4-manifolds and form finite-dimensional moduli spaces. On a Kahler surface the quaternionic mono
Externí odkaz:
http://arxiv.org/abs/alg-geom/9505029
Autor:
Okonek, Ch., Teleman, A.
We give a short proof for the fact that rationality of complex surfaces is a property depending only on the differential structure. Our proof uses the new Seiberg-Witten invariants.
Comment: (to appear in Comptes Rendus), 6 pages, LATEX
Comment: (to appear in Comptes Rendus), 6 pages, LATEX
Externí odkaz:
http://arxiv.org/abs/alg-geom/9505011
Autor:
Okonek, Ch., Teleman, A.
We introduce coupled Seiberg-Witten equations, and we prove, using a generalized vortex equation, that, for Kaehler surfaces, the moduli space of solutions of these equations can be identified with a moduli space of holomorphic stable pairs. In the r
Externí odkaz:
http://arxiv.org/abs/alg-geom/9505012
Publikováno v:
In Topology 1999 38(1):117-139
Publikováno v:
Topology. 46(3):225-294
We construct an obstruction theory for relative Hilbert schemes in the sense of Behrend-Fantechi and compute it explicitly for relative Hilbert schemes of divisors on smooth projective varieties. In the special case of curves on a surface V, our obst
Autor:
Okonek, Ch., Teleman, A.
Publikováno v:
Communications in Mathematical Physics; Jun2002, Vol. 227 Issue 3, p551-585, 35p