Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Okelo, Benard"'
Best approximation (BA) is an interesting field in functional analysis that has attracted a lot of attention from many researchers for a very long period of time up-to-date. Of greatest consideration is the characterization of the Chebyshev set (CS)
Externí odkaz:
http://arxiv.org/abs/2302.03000
Autor:
Okelo, Benard, Oburu, Jeffar
In this paper, we give new characterizations of monopole bundle systems of complex hypermanifolds in $n$-dimensional spaces for certain classes of operators. In particular, we consider the reproducing kernels for decomposable polynomials of finite al
Externí odkaz:
http://arxiv.org/abs/2202.04440
Publikováno v:
In Results in Control and Optimization March 2024 14
Autor:
Okelo, Benard
Let $H$ be an infinite dimensional, reflexive, separable Hilbert space and $NA(H)$ the class of all norm-attainble operators on $H.$ In this note, we study an implicit scheme for a canonical representation of nonexpansive contractions in norm-attaina
Externí odkaz:
http://arxiv.org/abs/2005.03069
Autor:
Okelo, Benard
Let $H$ be a reflexive, dense, separable, infinite dimensional complex Hilbert space and let $B(H)$ be the algebra of all bounded linear operators on $H$. In this paper, we carry out characterizations of norm-attainable operators in normed spaces. We
Externí odkaz:
http://arxiv.org/abs/2004.05496
Autor:
Okelo, Benard
In this paper, we give a detailed survey on norm inequalities for inner product type integral transformers. We first consider unitarily invariant norms and operator valued functions. We then give results on norm inequalities for inner product type in
Externí odkaz:
http://arxiv.org/abs/1904.02078
Autor:
Okelo, Benard
In this paper, we characterize absolute norm-attainability for compact hyponormal operators. We give necessary and sufficient conditions for a bounded linear compact hyponormal operator on an infinite dimensional complex Hilbert space to be absolutel
Externí odkaz:
http://arxiv.org/abs/1903.11948
Autor:
Okelo, Benard
In this paper convex optimization techniques are employed for convex optimization problems in infinite dimensional Hilbert spaces. A first order optimality condition is given. Let $f : \mathbb{R}^{n}\rightarrow \mathbb{R}$ and let $x\in \mathbb{R}^{n
Externí odkaz:
http://arxiv.org/abs/1903.10177
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
International Journal of Open Problems in Computer Science & Mathematics; Sep2023, Vol. 16 Issue 3, p53-65, 13p