Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Okeke, N. O."'
Autor:
Okeke, N. O., Egwe, M. E.
The partial multiplication by weak product and the weak derivative operation delineate the Sobolev spaces $W^{k,p}(\Omega)$ as locally convex partial $^*$-algebras on $L^p(\Omega)$. We characterised them as locally convex Lie groupoids $\mathscr{W} :
Externí odkaz:
http://arxiv.org/abs/2405.18436
Autor:
Okeke, N. O., Egwe, M. E.
Using the convolution product and weak derivatives, we consider the partial dynamical systems of the locally convex $L^p(\Omega)$ spaces defined by the action of the smooth algebra $\mathscr{K}(\Omega)$ through its nets. Slice analysis is then employ
Externí odkaz:
http://arxiv.org/abs/2403.18828
Autor:
Okeke, N. O., Egwe, M. E.
The automorphism group $Aut(X,\mu)$ of a compact, complete metric space $X$ with a Radon measure $\mu$ is a subgroup of $\mathcal{U}(L^2(X,\mu))$-the unitary group of operators on $L^2(X,\mu)$. The $Aut(X,\mu)$-action on the generalized space $\mathc
Externí odkaz:
http://arxiv.org/abs/2101.11106
Autor:
Okeke, N. O., Egwe, M. E.
Given a locally convex space $(\mathcal{A},\tau)$ with a Hausdorff locally convex topology $\tau$ such that the following maps are continuous; $u \mapsto u^*$ for all $u \in \mathcal{A}$, $x \mapsto x\cdot y$ and $x \mapsto z\cdot x$ for every left a
Externí odkaz:
http://arxiv.org/abs/2101.08489
Autor:
Okeke, N. O., Egwe, M. E.
Using the group $G(1)$ of invertible elements and the maximal ideals $\mathfrak{m}_x$ of the commutative algebra $C(X)$ of real-valued functions on a compact regular space $X$, we define a Borel action of the algebra on the measure space $(X,\mu)$ wi
Externí odkaz:
http://arxiv.org/abs/2101.08159