Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Okada, Izumi"'
On the trace of a discrete-time simple random walk on $\mathbb{Z}^d$ for $d\geq 2$, we consider the evolution of favorite sites, i.e., sites that achieve the maximal local time at a certain time. For $d=2$, we show that almost surely three favorite s
Externí odkaz:
http://arxiv.org/abs/2409.00995
Autor:
Adhikari, Arka, Okada, Izumi
In this paper, we find a natural four dimensional analog of the moderate deviation results for the capacity of the random walk, which corresponds to Bass, Chen and Rosen \cite{BCR} concerning the volume of the random walk range for $d=2$. We find tha
Externí odkaz:
http://arxiv.org/abs/2310.07685
We show that the range of a critical branching random walk conditioned to survive forever and the Minkowski sum of two independent simple random walk ranges are intersection-equivalent in any dimension $d\ge 5$, in the sense that they hit any finite
Externí odkaz:
http://arxiv.org/abs/2308.12948
Autor:
Adhikari, Arka, Okada, Izumi
In this paper, we find a natural four dimensional analog of the moderate deviation results of Chen (2004) for the mutual intersection of two independent Brownian motions $B$ and $B'$. In this work, we focus on understanding the following quantity, fo
Externí odkaz:
http://arxiv.org/abs/2304.12101
Autor:
Dembo, Amir, Okada, Izumi
We establish both the $\limsup$ and the $\liminf$ law of the iterated logarithm (LIL), for the capacity of the range of a simple random walk in any dimension $d\ge 3$. While for $d \ge 4$, the order of growth in $n$ of such LIL at dimension $d$ match
Externí odkaz:
http://arxiv.org/abs/2208.02184
Autor:
Nakazawa, Hikaru1 (AUTHOR) hikaru@tohoku.ac.jp, Okada, Izumi1 (AUTHOR), Ito, Tomoyuki1 (AUTHOR), Ishigaki, Yuri1 (AUTHOR), Kumagai, Izumi1 (AUTHOR), Umetsu, Mitsuo1,2 (AUTHOR) mitsuo@tohoku.ac.jp
Publikováno v:
Scientific Reports. 9/28/2024, Vol. 14 Issue 1, p1-12. 12p.
We consider solutions of the linear heat equation in $\mathbb{R}^N$ with isolated singularities. It is assumed that the position of a singular point depends on time and is H\"older continuous with the exponent $\alpha \in (0,1)$. We show that any iso
Externí odkaz:
http://arxiv.org/abs/2012.04453
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Okada, Izumi, Yanagida, Eiji
Publikováno v:
In Stochastic Processes and their Applications March 2022 145:204-225
Autor:
Okada, Izumi
In this article, we study special points of a simple random walk and a Gaussian free field, such as (nearly) favorite points, late points and high points. In section $2$, we extend results of [19] and suggest open problems for $d=2$. In section $3$,
Externí odkaz:
http://arxiv.org/abs/1606.03787