Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Oilson Alberto Gonzatto"'
Autor:
Francisco Louzada, Jose Alberto Cuminato, Oscar Mauricio Hernandez Rodriguez, Vera L. D. Tomazella, Eder Angelo Milani, Paulo Henrique Ferreira, Pedro Luiz Ramos, Gustavo Bochio, Ivan Carlos Perissini, Oilson Alberto Gonzatto Junior, Alex Leal Mota, Luis Felipe Acuna Alegria, Danilo Colombo, Paulo Guilherme Oliveira De Oliveira, Hugo Francisco Lisboa Santos, Marcus Vinicius De Campos De Magalhaes
Publikováno v:
IEEE Access, Vol 8, Pp 219757-219774 (2020)
In this paper, our proposal consists of incorporating frailty into a statistical methodology for modeling time-to-event data, based on non-proportional hazards regression model. Specifically, we use the generalized time-dependent logistic (GTDL) mode
Externí odkaz:
https://doaj.org/article/9f86557d393e4fc39f2213bbd1e0ac10
Autor:
Giordani, Luiz, Darú, Gilsiley, Queiroz, Rhenan, Buzinaro, Vitor, Neiva, Davi Keglevich, Guzmán, Daniel Camilo Fuentes, Henriques, Marcos Jardel, Junior, Oilson Alberto Gonzatto, Louzada, Francisco
The proliferation of fake news has become a significant concern in recent times due to its potential to spread misinformation and manipulate public opinion. This paper presents a comprehensive study on detecting fake news in Brazilian Portuguese, foc
Externí odkaz:
http://arxiv.org/abs/2309.11052
Autor:
Oilson Alberto Gonzatto Junior, Terezinha Aparecida Guedes, Aline Maria Orbolato Gonçalves-Zuliane, William Mario de Carvalho Nunes
Publikováno v:
Acta Scientiarum: Biological Sciences, Vol 39, Iss 2 (2017)
Data with excess zeros are frequently found in practice, and the recommended analysis is to use models that adequately address the counting of zero observations. In this study, the Zero Inflated Beta Regression Model (BeZI) was used on experimental d
Externí odkaz:
https://doaj.org/article/6ab948242d7d46329ba3b8cc3fa1b640
Autor:
Adilandri Mércio Lobeiro, Oilson Alberto Gonzatto Junior, Tereza Maria Pereira Garcia, Liliana Madalena Gramani, Eloy Kaviski
Publikováno v:
Vetor, Vol 24, Iss 1 (2016)
Este artigo objetiva divulgar uma Maplet programada via Maple 16 para resolver um Problema de Valor Inicial composto por uma Equação Diferencial Ordinária de Primeira Ordem utilizando os Métodos Lineares de Passo Múltiplo Explícitos. Para isso,
Externí odkaz:
https://doaj.org/article/8d10e649e3d34c4985379bfe7738dc0a
Autor:
Pereira, Edilenia Queiroz1,2 (AUTHOR) edileniaqueiroz@usp.br, Junior, Oilson Alberto Gonzatto1 (AUTHOR), Tomazella, Vera Lucia Damasceno2 (AUTHOR), Morita, Lia Hanna Martins3 (AUTHOR), Mota, Alex L.4 (AUTHOR), Louzada Neto, Francisco1 (AUTHOR)
Publikováno v:
Applied Stochastic Models in Business & Industry. Jul2024, Vol. 40 Issue 4, p1182-1201. 20p.
Autor:
Afonso Paiva, Dinalva Sales, Eder Brito, Glauco Gonçalves, Marcos Jardel Henriques, Oilson Alberto Gonzatto Junior, Samuel Silva, Saulo Mastelini, Thales Vieira, Vera Tomazella
Massive data collection has been carried out in both information gathering and decision making in real-time. Due to the nature of the data type (spatial or spatio-temporal), treatment and interpolation become essential steps in this process. In this
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bf848b4bba88a9acb79e506bd1a756f2
https://doi.org/10.33774/miir-2022-18js5
https://doi.org/10.33774/miir-2022-18js5
Autor:
Diego C. Nascimento, Pedro Luiz Ramos, Oilson Alberto Gonzatto Junior, Anderson Ara, Francisco Louzada, Marcos Jardel Henriques, Gabriel Kamada Mattar, Paula Ianishi
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
This paper provides a rich framework to estimate the causal relationship among eighteen features (related to the product type and classification) on an agronomy study by using Bayesian Networks, which are a type of probabilistic graphical model. Ther
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c71dae0340ef7ad2aabc5326700e320
Safety-Stock: predicting the demand for supplies in Brazilian hospitals during the COVID-19 pandemic
Autor:
Francisco Louzada, Marcos Jardel Henriques, Oilson Alberto Gonzatto, Maristela Oliveira dos Santos, Diego C. Nascimento, Rafaela Guerra, Diego Assad, Evelyn Keise Bertazo, Cibele M. Russo, José Alberto Cuminato, Caio Paziani Tomazella, Denis Neves
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
BackgroundMany challenges lie ahead when dealing with COVID-19, not only related to the acceleration of the pandemic, but also to the prediction of personal protective equipment consumption to accommodate the explosive demand. Due to this situation o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce89476333cc6f86c665ae77b9077164
Autor:
Gleici da Silva Castro Perdona, Mariana M. Gomes, Gabriel G. Ferreira, Vinicius H. Valentim, Diego C. Nascimento, Pedro Luiz Ramos, Oilson Alberto Gonzatto Junior, Renan S. Barbosa, Patrícia Picardi Morais de Castro, Luiz G. Silva, Francisco Louzada, Vinicius O. Boen
Publikováno v:
Anais do I Workshop de Matemática, Estatística e Computação Aplicadas à Indústria.
Autor:
Paulo Guilherme Oliveira De Oliveira, Hugo Francisco Lisboa Santos, Alex L. Mota, Pedro Luiz Ramos, Eder Angelo Milani, Oilson Alberto Gonzatto Junior, José Alberto Cuminato, Luis F. A. Alegría, Ivan C. Perissini, P.H.D. Ferreira, Marcus V. C. Magalhães, Gustavo Bochio, Oscar Mauricio Hernandez Rodriguez, Danilo Colombo, Francisco Louzada, Vera Tomazella
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
IEEE Access, Vol 8, Pp 219757-219774 (2020)
Universidade de São Paulo (USP)
instacron:USP
IEEE Access, Vol 8, Pp 219757-219774 (2020)
In this paper, our proposal consists of incorporating frailty into a statistical methodology for modeling time-to-event data, based on non-proportional hazards regression model. Specifically, we use the generalized time-dependent logistic (GTDL) mode
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::522d61d3487c03c371993d2187b05a62