Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Ogden, W. Jacob"'
Autor:
Ogden, W. Jacob, Yuan, Yu
Constant rank theorems are obtained for saddle solutions to the special Lagrangian equation and the quadratic Hessian equation. The argument also leads to Liouville type results for the special Lagrangian equation with subcritical phase, matching the
Externí odkaz:
http://arxiv.org/abs/2405.18603
Autor:
Albritton, Dallas, Ogden, W. Jacob
We consider a complexification of the Euler equations introduced by \v{S}ver\'ak which conserves energy. We prove that these complex Euler equations are nonlinearly ill-posed below analytic regularity and, moreover, we exhibit solutions which lose an
Externí odkaz:
http://arxiv.org/abs/2310.03120
The complex Green operator $\mathcal{G}$ on CR manifolds is the inverse of the Kohn-Laplacian $\square_b$ on the orthogonal complement of its kernel. In this note, we prove Schatten and Sobolev estimates for $\mathcal{G}$ on the unit sphere $\mathbb{
Externí odkaz:
http://arxiv.org/abs/1910.09674
We study the analogue of polynomials (solutions to $\Delta^{n+1} u =0$ for some $n$) on the Sierpinski gasket ($SG$) with respect to a family of symmetric, self-similar Laplacians constructed by Fang, King, Lee, and Strichartz, extending the work of
Externí odkaz:
http://arxiv.org/abs/1901.08713
Autor:
Albritton, Dallas, Ogden, W. Jacob
Publikováno v:
Communications on Pure & Applied Analysis; Nov2024, Vol. 23 Issue 11, p1-16, 16p
Autor:
Kim, Elena1 elena.kim@pomona.edu, Ogden, W. Jacob2 ogden048@umn.edu, Reerink, Tommie3 reerinkt@mit.edu, Zeytuncu, Yunus E.4 zeytuncu@umich.edu
Publikováno v:
New York Journal of Mathematics. 2020, p261-271. 11p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.