Zobrazeno 1 - 10
of 107
pro vyhledávání: '"Ogasa, Eiji"'
We define three different types of spanning surfaces for knots in thickened surfaces. We use these to introduce new Seifert matrices, Alexander-type polynomials, genera, and a signature invariant. One of these Alexander polynomials extends to virtual
Externí odkaz:
http://arxiv.org/abs/2207.08129
In the prequel of this paper, Kauffman and Ogasa introduced new topological quantum invariants of compact oriented 3-manifolds with boundary where the boundary is a disjoint union of two identical surfaces. The invariants are constructed via surgery
Externí odkaz:
http://arxiv.org/abs/2203.12797
We define a family of Khovanov-Lipshitz-Sarkar stable homotopy types for the homotopical Khovanov homology of links in thickened surfaces indexed by moduli space systems. This family includes the Khovanov-Lipshitz-Sarkar stable homotopy type for the
Externí odkaz:
http://arxiv.org/abs/2109.09245
Autor:
Kauffman, Louis H., Ogasa, Eiji
We introduce new topological quantum invariants of compact oriented 3-manifolds with boundary where the boundary is a disjoint union of two identical surfaces. The invariants are constructed via surgery on manifolds of the form $F \times I$ where $I$
Externí odkaz:
http://arxiv.org/abs/2108.13547
We discuss links in thickened surfaces. We define the Khovanov-Lipshitz-Sarkar stable homotopy type and the Steenrod square for the homotopical Khovanov homology of links in thickened surfaces with genus$>1$. A surface means a closed oriented surface
Externí odkaz:
http://arxiv.org/abs/2007.09241
Autor:
Kauffman, Louis H., Ogasa, Eiji
We define a second Steenrod square for virtual links, which is stronger than Khovanov homology for virtual links, toward constructing Khovanov-Lipshitz-Sarkar stable homotopy type for virtual links. This induces the first meaningful nontrivial exampl
Externí odkaz:
http://arxiv.org/abs/2001.07789
We succeed to generalize spun knots of classical 1-knots to the virtual 1-knot case by using the `spinning construction'. That, is, we prove the following: Let $Q$ be a spun knot of a virtual 1-knot $K$ by our method. The embedding type $Q$ in $S^4$
Externí odkaz:
http://arxiv.org/abs/1808.03023
Autor:
Ogasa, Eiji
Publikováno v:
Proceedings of the American Mathematical society 126, 1998, P.2175-2182
We prove that, for any ordinary sense slice 1-link $L$, we can define the Arf invariant and Arf(L)=0. We prove that, for any m-component 1-link L_1, there exists a 3m-component ordinary sense slaice 1-link L_2 of which L_1 is a sublink.
Comment:
Comment:
Externí odkaz:
http://arxiv.org/abs/1803.04586
Autor:
Ogasa, Eiji
Publikováno v:
Journal of knot theory and its ramificatioms 10, 2001, 913-922
There is a nonribbon 2-link all of whose components are trivial 2-knots and one of whose band-sums is a nonribbon 2-knot.
Comment: 15 pages, 7 figures
Comment: 15 pages, 7 figures
Externí odkaz:
http://arxiv.org/abs/1803.04581
Autor:
Ogasa, Eiji
Publikováno v:
Proceedings of the American Mathematical society 126, 1998, PP.3109-3116
Take transverse immersions f from a disjoint unin of the three 4-spheres $S^4_1$, $S^4_2$, and $S^4_3$ into $S^6$ with the following properties: (1) The restriction of $f$ to $S^4_i$ is an embedding, (2) The intersection of $f(S^4_i)$ and $f(S^4_j)$
Externí odkaz:
http://arxiv.org/abs/1803.03843