Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Ofer Busani"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 9 (2021)
Externí odkaz:
https://doaj.org/article/5ffe57381f7a4e7dbb8b7c5b13da282d
Publikováno v:
Forum of Mathematics, Sigma, Vol 8 (2020)
This paper gives a self-contained proof of the non-existence of nontrivial bi-infinite geodesics in directed planar last-passage percolation with exponential weights. The techniques used are couplings, coarse graining, and control of geodesics throu
Externí odkaz:
https://doaj.org/article/b77a6d12e4db4405ae57eedc7c861e95
We study the decay of the covariance of the Airy$_1$ process, $\mathcal{A}_1$, a stationary stochastic process on $\mathbb{R}$ that arises as a universal scaling limit in the Kardar-Parisi-Zhang (KPZ) universality class. We show that the decay is sup
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5808f3241b3cff35ba2dbbb4ca280b2a
Autor:
Ofer Busani, Patrik L. Ferrari
Publikováno v:
The Annals of Probability. 50
Autor:
Ofer Busani, Timo Seppäläinen
Publikováno v:
Electronic Journal of Probability. 27
Publikováno v:
Forum of Mathematics, Sigma. 9
We consider point to point last passage times to every vertex in a neighbourhood of size $\delta N^{\frac{2}{3}}$, distance $N$ away from the starting point. The increments of these last passage times in this neighbourhood are shown to be jointly equ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84f9558cdd638d3a988a2ad42a8da7f3
http://arxiv.org/abs/2001.03961
http://arxiv.org/abs/2001.03961
Publikováno v:
Forum of Mathematics, Sigma. 8
This paper gives a self-contained proof of the non-existence of nontrivial bi-infinite geodesics in directed planar last-passage percolation with exponential weights. The techniques used are couplings, coarse graining, and control of geodesics throug
Autor:
Ofer Busani, Timo Seppäläinen
Publikováno v:
Latin American Journal of Probability and Mathematical Statistics. 19:51
In [AAV] Amir, Angel and Valk{\'o} studied a multi-type version of the totally asymmetric simple exclusion process (TASEP) and introduced the TASEP speed process, which allowed them to answer delicate questions about the joint distribution of the spe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e9578d808e338e2456989c14cf9e4c15
http://arxiv.org/abs/1911.06504
http://arxiv.org/abs/1911.06504