Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Ofelie De Wel"'
Autor:
Anneleen Dereymaeker, Vladimir Matic, Jan Vervisch, Perumpillichira J. Cherian, Amir H. Ansari, Ofelie De Wel, Paul Govaert, Maarten De Vos, Sabine Van Huffel, Gunnar Naulaers, Katrien Jansen
Publikováno v:
Pediatrics and Neonatology, Vol 60, Iss 1, Pp 50-58 (2019)
Background: To improve the objective assessment of continuous video-EEG (cEEG) monitoring of neonatal brain function, the aim was to relate automated derived amplitude and duration parameters of the suppressed periods in the EEG background (dynamic I
Externí odkaz:
https://doaj.org/article/2aa9945bdbb24814959852473e23cba9
Autor:
Dries Hendrikx, Anne Smits, Mario Lavanga, Ofelie De Wel, Liesbeth Thewissen, Katrien Jansen, Alexander Caicedo, Sabine Van Huffel, Gunnar Naulaers
Publikováno v:
Frontiers in Physiology, Vol 10 (2019)
Neurovascular coupling refers to the mechanism that links the transient neural activity to the subsequent change in cerebral blood flow, which is regulated by both chemical signals and mechanical effects. Recent studies suggest that neurovascular cou
Externí odkaz:
https://doaj.org/article/cf715a92554045e2aa55e5974842189b
Autor:
Ofelie De Wel, Mario Lavanga, Alexander Caicedo, Katrien Jansen, Gunnar Naulaers, Sabine Van Huffel
Publikováno v:
Entropy, Vol 21, Iss 10, p 936 (2019)
Established sleep cycling is one of the main hallmarks of early brain development in preterm infants, therefore, automated classification of the sleep stages in preterm infants can be used to assess the neonate’s cerebral maturation. Tensor algebra
Externí odkaz:
https://doaj.org/article/38d5e46669e8455db94d7c5e55c3ac6c
Autor:
Ofelie De Wel, Mario Lavanga, Alexander Caicedo Dorado, Katrien Jansen, Anneleen Dereymaeker, Gunnar Naulaers, Sabine Van Huffel
Publikováno v:
Entropy, Vol 19, Iss 10, p 516 (2017)
Automated analysis of the electroencephalographic (EEG) data for the brain monitoring of preterm infants has gained attention in the last decades. In this study, we analyze the complexity of neonatal EEG, quantified using multiscale entropy. The aim
Externí odkaz:
https://doaj.org/article/c13774338d7447aaa15e3694d8bf4af1
Autor:
Ofelie De Wel, Sabine Van Huffel, Katrien Jansen, Kirubin Pillay, Amir Hossein Ansari, Anneleen Dereymaeker, Maarten De Vos, Gunnar Naulaers
Publikováno v:
Journal of Neural Engineering
OBJECTIVE: To classify sleep states using electroencephalogram (EEG) that reliably works over a wide range of preterm ages, as well as term age. APPROACH: A convolutional neural network is developed to perform 2- and 4-class sleep classification in n
Autor:
Gunnar Naulaers, Alexander Caicedo, Anneleen Dereymaeker, Maarten De Vos, Mario Lavanga, Jan Vervisch, Sabine Van Huffel, Katrien Jansen, Ofelie De Wel, Amir Hossein Ansari
Publikováno v:
Journal of Neural Engineering
Journal of Neural Engineering, IOP Publishing, 2018, 15 (6), pp.066006. ⟨10.1088/1741-2552/aadc1f⟩
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
Journal of Neural Engineering, IOP Publishing, 2018, 15 (6), pp.066006. ⟨10.1088/1741-2552/aadc1f⟩
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
OBJECTIVE: Neonates spend most of their time asleep. Sleep of preterm infants evolves rapidly throughout maturation and plays an important role in brain development. Since visual labelling of the sleep stages is a time consuming task, automated analy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e0f79d3f81f52c6a3567318725fed0d7
https://hal.archives-ouvertes.fr/hal-03620959
https://hal.archives-ouvertes.fr/hal-03620959
Autor:
Ofelie De Wel, Mario Lavanga, Gunnar Naulaers, Anneleen Dereymaeker, Sabine Van Huffel, Katrien Jansen, Alexander Caicedo Dorado
Publikováno v:
Entropy, Vol 19, Iss 10, p 516 (2017)
Entropy
Entropy, 2017, 19 (10), pp.516. ⟨10.3390/e19100516⟩
Entropy; Volume 19; Issue 10; Pages: 516
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
Entropy
Entropy, 2017, 19 (10), pp.516. ⟨10.3390/e19100516⟩
Entropy; Volume 19; Issue 10; Pages: 516
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
© 2017 by the authors. Automated analysis of the electroencephalographic (EEG) data for the brain monitoring of preterm infants has gained attention in the last decades. In this study, we analyze the complexity of neonatal EEG, quantified using mult
Publikováno v:
CinC
© 2015 CCAL. Automatic classification of heartbeats in different categories is important for ECG analysis. The number of irregular heartbeats in a signal can for example be used as a risk stratifier for sudden cardiac death. Current heart-beat class
Autor:
Amir Hossein Ansari, Ofelie De Wel, Mario Lavanga, Alexander Caicedo, Anneleen Dereymaeker, Katrien Jansen, Jan Vervisch, Maarten De Vos, Gunnar Naulaers, Sabine Van Huffel
Publikováno v:
Journal of Neural Engineering; Dec2018, Vol. 15 Issue 6, p1-1, 1p