Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Odalric-Ambrym Maillard"'
Autor:
Odalric-Ambrym, Maillard
In this paper, we revisit the concentration inequalities for the supremum of the cumulative distribution function (CDF) of a real-valued continuous distribution as established by Dvoretzky, Kiefer, Wolfowitz and revisited later by Massart in two semi
Externí odkaz:
http://arxiv.org/abs/2012.10320
Publikováno v:
Computers and Electronics in Agriculture
Reinforcement learning (RL), including multi-armed bandits, is a branch of machine learning that deals with the problem of sequential decision-making in uncertain and unknown environments through learning by practice. While best known for being the c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::772dbc4942690393979f89fbf33b2e50
http://agritrop.cirad.fr/601655/
http://agritrop.cirad.fr/601655/
Autor:
Odalric-Ambrym Maillard
Publikováno v:
Mathematical Methods of Statistics
Mathematical Methods of Statistics, 2022, ⟨10.3103/S1066530721010038⟩
Mathematical Methods of Statistics, 2022, ⟨10.3103/S1066530721010038⟩
International audience; In this paper, we revisit the concentration inequalities for the supremum of the cumulative distribution function (CDF) of a real-valued continuous distribution as established by Dvoretzky, Kiefer, Wolfowitz and revisited late
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::904b6f9f72dd04795612c26feaba0f84
https://hal.science/hal-03780573/file/LocalDKW_MMStat_CR.pdf
https://hal.science/hal-03780573/file/LocalDKW_MMStat_CR.pdf
Publikováno v:
Computer Networks
Computer Networks, 2022, 216, pp.109185. ⟨10.1016/j.comnet.2022.109185⟩
Computer Networks, 2022, 216, pp.109185. ⟨10.1016/j.comnet.2022.109185⟩
With over 75 billion Internet of Things (IoT) devices expected worldwide by the year 2025, inaugural MAC layer solutions for long-range IoT deployments no longer suffice. LoRaWAN, the principal technology for comprehensive IoT deployments, enables lo
Publikováno v:
Machine Learning and Knowledge Discovery in Databases. Research Track ISBN: 9783030864859
ECML/PKDD (1)
ECML/PKDD (1)
We study a variant of the multi-armed bandit problem in which a learner faces every day one of \(\mathcal {B}\) many bandit instances, and call it a routine bandit. More specifically, at each period Open image in new window , the same bandit \(b^h_\s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cded7830ee254a0966dc2dbb8867018e
https://doi.org/10.1007/978-3-030-86486-6_1
https://doi.org/10.1007/978-3-030-86486-6_1
Autor:
Odalric-Ambrym Maillard
Publikováno v:
Mathematical Methods of Statistics
Mathematical Methods of Statistics, 2018, 27, pp.1-31. ⟨10.3103/S1066530718010015⟩
Mathematical Methods of Statistics, Allerton Press, Springer (link), 2018, 27
Mathematical Methods of Statistics, Allerton Press, Springer (link), 2018, 27, pp.1-31. ⟨10.3103/S1066530718010015⟩
Mathematical Methods of Statistics, 2018, 27, pp.1-31. ⟨10.3103/S1066530718010015⟩
Mathematical Methods of Statistics, Allerton Press, Springer (link), 2018, 27
Mathematical Methods of Statistics, Allerton Press, Springer (link), 2018, 27, pp.1-31. ⟨10.3103/S1066530718010015⟩
We consider parametric exponential families of dimension K on the real line. We study a variant of boundary crossing probabilities coming from the multi-armed bandit literature, in the case when the real-valued distributions form an exponential famil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::448656e8ec79694d6afb05e9cee4115f
https://hal.science/hal-01737150/document
https://hal.science/hal-01737150/document
Publikováno v:
International Journal of Data Science and Analytics
International Journal of Data Science and Analytics, Springer Verlag, 2017, 3 (4), pp.267-283. ⟨10.1007/s41060-017-0050-5⟩
International Journal of Data Science and Analytics, 2017, 3 (4), pp.267-283. ⟨10.1007/s41060-017-0050-5⟩
International Journal of Data Science and Analytics, Springer Verlag, 2017, 3 (4), pp.267-283. ⟨10.1007/s41060-017-0050-5⟩
International Journal of Data Science and Analytics, 2017, 3 (4), pp.267-283. ⟨10.1007/s41060-017-0050-5⟩
International audience; We consider a variant of the stochastic multi-armed bandit with K arms where the rewards are not assumed to be identically distributed, but are generated by a non-stationary stochastic process. We first study the unique best a
Publikováno v:
Machine Learning and Knowledge Discovery in Databases ISBN: 9783030461324
ECML/PKDD (3)
European Conference on Machine Learning
European Conference on Machine Learning, Sep 2019, Würzburg, Germany
ECML/PKDD (3)
European Conference on Machine Learning
European Conference on Machine Learning, Sep 2019, Würzburg, Germany
International audience; We consider the problem of online planning in a Markov Decision Process when given only access to a generative model, restricted to open-loop policies-i.e. sequences of actions-and under budget constraint. In this setting, the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3a3a2b433597e42f60776f180b1fef0d
http://arxiv.org/abs/1904.04700
http://arxiv.org/abs/1904.04700
Autor:
Rémi Bardenet, Odalric-Ambrym Maillard
Publikováno v:
Bernoulli
Bernoulli, 2015, 21 (3), pp.1361-1385. ⟨10.3150/14-BEJ605⟩
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2015, 21 (3), pp.1361-1385. ⟨10.3150/14-BEJ605⟩
Bernoulli 21, no. 3 (2015), 1361-1385
Bernoulli, 2015, 21 (3), pp.1361-1385. ⟨10.3150/14-BEJ605⟩
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2015, 21 (3), pp.1361-1385. ⟨10.3150/14-BEJ605⟩
Bernoulli 21, no. 3 (2015), 1361-1385
Concentration inequalities quantify the deviation of a random variable from a fixed value. In spite of numerous applications, such as opinion surveys or ecological counting procedures, few concentration results are known for the setting of sampling w
Publikováno v:
International Conference on Algorithmic Learning Theory (ALT)
International Conference on Algorithmic Learning Theory (ALT), Oct 2014, Bled, Slovenia. pp.140-154
Lecture Notes in Computer Science ISBN: 9783319116617
ALT
International Conference on Algorithmic Learning Theory (ALT), Oct 2014, Bled, Slovenia. pp.140-154
Lecture Notes in Computer Science ISBN: 9783319116617
ALT
We consider a reinforcement learning setting introduced in (Maillard et al., NIPS 2011) where the learner does not have explicit access to the states of the underlying Markov decision process (MDP). Instead, she has access to several models that map
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::118a0cd174f76142e45e7ec738e8e62a
https://inria.hal.science/hal-01057562
https://inria.hal.science/hal-01057562