Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Obus, Andrew"'
Autor:
Obus, Andrew, Turchetti, Daniele
Let $X$ be a smooth projective curve over a complete discretely valued field $K$. Let $L/K$ be the minimal extension such that $X \times_K L$ has a semi-stable model, and write $e(L/K)$ for the ramification index of $L/K$. Let $e(X)$ be the so-called
Externí odkaz:
http://arxiv.org/abs/2112.14728
Autor:
Obus, Andrew, Srinivasan, Padmavathi
Publikováno v:
Res. Number Theory 8 (2022), no. 2, Paper No. 27
Let $K$ be a discretely valued field with ring of integers $\mathcal{O}_K$ with perfect residue field. Let $K(x)$ be the rational function field in one variable. Let $\mathbb{P}^1_{\mathcal{O}_K}$ be the standard smooth model of $\mathbb{P}^1_K$ with
Externí odkaz:
http://arxiv.org/abs/2105.03030
Autor:
Obus, Andrew, Shaska, Tony
Publikováno v:
Math. Comp. 90 (2021), no. 332, 2951--2975
Let $\mathcal{C}$ be a smooth, projective, genus $g\geq 2$ curve, defined over $\mathbb{C}$. Then $\mathcal{C}$ has \emph{many automorphisms} if its corresponding moduli point $p \in \mathcal{M}_g$ has a neighborhood $U$ in the complex topology, such
Externí odkaz:
http://arxiv.org/abs/2006.12685
Publikováno v:
J. Th\'eor. Nombres Bordeaux 34 (2022), no. 1, 251--269
It is conjectured that if k is an algebraically closed field of characteristic p > 0, then any branched G-cover of smooth projective k-curves where the "KGB" obstruction vanishes and where a p-Sylow subgroup of G is cyclic lifts to characteristic 0.
Externí odkaz:
http://arxiv.org/abs/1912.12797
Autor:
Obus, Andrew, Srinivasan, Padmavathi
Publikováno v:
Int. Math. Res. Notices (2024), no. 9, 7343--7359
We prove an inequality between the conductor and the discriminant for all hyperelliptic curves defined over discretely valued fields $K$ with perfect residue field of characteristic not 2. Specifically, if such a curve is given by $y^2 = f(x)$ with $
Externí odkaz:
http://arxiv.org/abs/1910.02589
Publikováno v:
Journal de Théorie des Nombres de Bordeaux, 2022 Jan 01. 34(1), 251-269.
Externí odkaz:
https://www.jstor.org/stable/48676933
Autor:
Obus, Andrew, Wewers, Stefan
Publikováno v:
J. Algebraic Geom. 29 (2020), no. 4, 691--728
A weak wild arithmetic quotient singularity arises from the quotient of a smooth arithmetic surface by a finite group action, where the inertia group of a point on a closed characteristic p fiber is a p-group acting with smallest possible ramificatio
Externí odkaz:
http://arxiv.org/abs/1805.09709
Autor:
Hasson, Hilaf, Obus, Andrew
Publikováno v:
Albanian J. Math., 12 (2018), 8--14
We show that the abc Conjecture implies the Weak Diversity Conjecture of Bilu and Luca.
Comment: 6 pages
Comment: 6 pages
Externí odkaz:
http://arxiv.org/abs/1706.05782
Autor:
Doyle, John R., Krieger, Holly, Obus, Andrew, Pries, Rachel, Rubinstein-Salzedo, Simon, West, Lloyd W.
Publikováno v:
Ergod. Th. Dynam. Sys. 39 (2019) 2717-2768
The dynatomic modular curves parametrize polynomial maps together with a point of period $n$. It is known that the dynatomic curves $Y_1(n)$ are smooth and irreducible in characteristic 0 for families of polynomial maps of the form $f_c(z) = z^m +c$
Externí odkaz:
http://arxiv.org/abs/1703.04172
Autor:
Obus, Andrew
Publikováno v:
Advanced Lectures in Mathematics 46, "Open Problems in Arithmetic Algebraic Geometry" (2019), 9--59
The lifting problem for curves with automorphisms asks whether we can lift a smooth projective characteristic p curve with a group G of automorphisms to characteristic zero. This was solved by Grothendieck when G acts with prime-to-p stabilizers, and
Externí odkaz:
http://arxiv.org/abs/1703.01191