Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Obraczka, Daniel"'
Cluster repair methods aim to determine errors in clusters and modify them so that each cluster consists of records representing the same entity. Current cluster repair methodologies primarily assume duplicate-free data sources, where each record fro
Externí odkaz:
http://arxiv.org/abs/2401.14992
With knowledge graphs (KGs) at the center of numerous applications such as recommender systems and question answering, the need for generalized pipelines to construct and continuously update such KGs is increasing. While the individual steps that are
Externí odkaz:
http://arxiv.org/abs/2302.11509
Autor:
Hofer, Marvin1 (AUTHOR) hofer@informatik.uni-leipzig.de, Obraczka, Daniel1 (AUTHOR) koepcke@hs-mittweida.de, Saeedi, Alieh2 (AUTHOR) saeedi@informatik.uni-leipzig.de, Köpcke, Hanna1,3 (AUTHOR) rahm@informatik.uni-leipzig.de, Rahm, Erhard1,2 (AUTHOR)
Publikováno v:
Information (2078-2489). Aug2024, Vol. 15 Issue 8, p509. 61p.
Entity Resolution (ER) is a constitutional part for integrating different knowledge graphs in order to identify entities referring to the same real-world object. A promising approach is the use of graph embeddings for ER in order to determine the sim
Externí odkaz:
http://arxiv.org/abs/2101.06126
Autor:
Obraczka, Daniel
In this work we presented an implementation that uses decision trees to learn highly accurate link specifications. We compared our approach with three state-of-the-art classifiers on nine datasets and showed, that our approach gives comparable result
Externí odkaz:
https://ul.qucosa.de/id/qucosa%3A17168
https://ul.qucosa.de/api/qucosa%3A17168/attachment/ATT-0/
https://ul.qucosa.de/api/qucosa%3A17168/attachment/ATT-0/
Autor:
Ngonga Ngomo, Axel-Cyrille, Sherif, Mohamed Ahmed, Georgala, Kleanthi, Hassan, Mofeed Mohamed, Dreßler, Kevin, Lyko, Klaus, Obraczka, Daniel, Soru, Tommaso
Publikováno v:
KI: Künstliche Intelligenz; Nov2021, Vol. 35 Issue 3/4, p413-423, 11p
Autor:
Obraczka, Daniel, Rahm, Erhard
Publikováno v:
SN Computer Science; November 2022, Vol. 3 Issue: 6