Zobrazeno 1 - 10
of 278
pro vyhledávání: '"Oberlin, Daniel"'
Autor:
Oberlin, Daniel, Oberlin, Richard
For some self-similar sets K in d-dimensional Euclidean space we obtain certain lower bounds for the lower Minkowski dimension of K+E in terms of the lower Minkowski dimension of E.
Comment: 12 pages
Comment: 12 pages
Externí odkaz:
http://arxiv.org/abs/1506.06938
Autor:
Oberlin, Daniel, Oberlin, Richard
We use mixed norm estimates for the spherical averaging operator to obtain some results concerning pinned distance sets.
Externí odkaz:
http://arxiv.org/abs/1411.0915
Autor:
Oberlin, Daniel, Oberlin, Richard
We use a restriction theorem for Fourier transforms of fractal measures to study projections onto families of planes in R^3 whose normal directions form nondegenerate curves.
Comment: arXiv admin note: text overlap with arXiv:1009.5366
Comment: arXiv admin note: text overlap with arXiv:1009.5366
Externí odkaz:
http://arxiv.org/abs/1307.5039
Autor:
Oberlin, Daniel, Oberlin, Richard
We study some discrete and continuous variants of the following problem of Erdos: given a finite subset P of R^2 or R^3, what is the maximum number of pairs (p_1,p_2) with p_1,p_2 in P and |p_1 -p_2 |=1?
Externí odkaz:
http://arxiv.org/abs/1209.6537
Autor:
Oberlin, Daniel M.
We give lower bounds for the Hausdorff dimensions of some model Furstenberg sets.
Comment: 8 pages, to appear in Proc. Amer. Math. Soc
Comment: 8 pages, to appear in Proc. Amer. Math. Soc
Externí odkaz:
http://arxiv.org/abs/1205.2899
Publikováno v:
Journal f\"ur die reine und angewandte Mathematik, 682 (2013), 167-206
Consider the Fourier restriction operator associated to a curve in $R^d$, $d\ge 3$. We prove for various classes of curves the endpoint restricted strong type estimate with respect to affine arclength measure on the curve. An essential ingredient is
Externí odkaz:
http://arxiv.org/abs/1109.1300
Autor:
Oberlin, Daniel M.
We prove a generalization of a result of Peres and Schlag on the dimensions of certain exceptional sets of projections and then apply it to a geometric problem.
Comment: 9 pages
Comment: 9 pages
Externí odkaz:
http://arxiv.org/abs/1107.4913
Autor:
Oberlin, Daniel M.
We prove a Fourier restriction result, uniform over a certain collection of reference measures, for some indices in the Stein-Tomas range.
Comment: 3 pages
Comment: 3 pages
Externí odkaz:
http://arxiv.org/abs/1010.0531
Autor:
Erdogan, M. Burak, Oberlin, Daniel M.
We establish estimates for restrictions to certain curves in R^2 of the Fourier transforms of some fractal measures.
Comment: 11 pages
Comment: 11 pages
Externí odkaz:
http://arxiv.org/abs/1009.5366
Autor:
Oberlin, Daniel M.
We prove convolution estimates for affine arclength measure on certain flat curves in dimensions 2, 3, and 4.
Externí odkaz:
http://arxiv.org/abs/0911.1471