Zobrazeno 1 - 10
of 60
pro vyhledávání: '"OROBITG, JOAN"'
Autor:
Cantero, Juan Carlos, Orobitg, Joan
For the aggregation equation in $\mathbb{R}$, we consider the evolution of an initial density corresponding to the characteristic function of some set $\Omega_0$. We study the limit measure at the blow up time 1 for $\Omega_0$ open or compact and we
Externí odkaz:
http://arxiv.org/abs/2112.14095
We prove well-posedness of linear scalar conservation laws using only assumptions on the growth and the modulus of continuity of the velocity field, but not on its divergence. As an application, we obtain uniqueness of solutions in the atomic Hardy s
Externí odkaz:
http://arxiv.org/abs/1701.04603
Autor:
Baisón, Antonio L., Clop, Albert, Giova, Raffaella, Orobitg, Joan, di Napoli, Antonia Passarelli
We study nonlinear elliptic equations in divergence form $${\operatorname{div}}{\mathcal A}(x,Du)={\operatorname{div}}G.$$ When ${\mathcal A}$ has linear growth in $Du$, and assuming that $x\mapsto{\mathcal A}(x,\xi)$ enjoys $B^\alpha_{\frac{n}\alpha
Externí odkaz:
http://arxiv.org/abs/1603.05565
In this note, we study the well-posedness of the Cauchy problem for the transport equation in the BMO space and certain Triebel-Lizorkin spaces.
Comment: 14 pages
Comment: 14 pages
Externí odkaz:
http://arxiv.org/abs/1512.03650
In this paper, we look at quasiconformal solutions $\phi:\mathbb{C}\to\mathbb{C}$ of Beltrami equations $$ \partial_{\overline{z}} \phi(z)=\mu(z)\,\partial_z \phi (z). $$ where $\mu\in L^\infty(\mathbb{C})$ is compactly supported on $\mathbb{D}$, $\|
Externí odkaz:
http://arxiv.org/abs/1507.05799
In this paper, we study flows associated to Sobolev vector fields with subexponentially integrable divergence. Our approach is based on the transport equation following DiPerna-Lions [DPL89]. A key ingredient is to use a quantitative estimate of solu
Externí odkaz:
http://arxiv.org/abs/1507.04016
We face the well-posedness of linear transport Cauchy problems $$\begin{cases}\dfrac{\partial u}{\partial t} + b\cdot\nabla u + c\,u = f&(0,T)\times{\mathbb R}^n\\u(0,\cdot)=u_0\in L^\infty&{\mathbb R}^n\end{cases}$$ under borderline integrability as
Externí odkaz:
http://arxiv.org/abs/1502.05303
It is known that the improved Cotlar's inequality $B^{*}f(z) \le C M(Bf)(z)$, $z\in\mathbb C$, holds for the Beurling transform $B$, the maximal Beurling transform $B^{*}f(z)=$ $\displaystyle\sup_{\varepsilon >0}\left|\int_{|w|>\varepsilon}f(z-w) \fr
Externí odkaz:
http://arxiv.org/abs/1404.2196
This paper continues the study, initiated in the works {MOV} and {MOPV}, of the problem of controlling the maximal singular integral $T^{*}f$ by the singular integral $Tf$. Here $T$ is a smooth homogeneous Calder\'on-Zygmund singular integral operato
Externí odkaz:
http://arxiv.org/abs/1302.5551
Publikováno v:
In Journal of Functional Analysis 1 January 2019 276(1):45-77