Zobrazeno 1 - 10
of 3 563
pro vyhledávání: '"OLIVEIRA, E. A. P."'
Let ${{\bf R}_{\mathbb S^{d-1}}}(p\to q)$ denote the best constant for the $L^p(\mathbb{R}^d)\to L^q(\mathbb S^{d-1})$ Fourier restriction inequality to the unit sphere $\mathbb S^{d-1}$, and let ${\bf R}_{\mathbb S^{d-1}} (p\to q;\textrm{rad})$ deno
Externí odkaz:
http://arxiv.org/abs/2412.03942
We prove a new family of sharp $L^2(\mathbb S^{d-1})\to L^4(\mathbb R^d)$ Fourier extension inequalities from the unit sphere $\mathbb S^{d-1}\subset \mathbb R^d$, valid in arbitrary dimensions $d\geq 3$.
Comment: 12 pages
Comment: 12 pages
Externí odkaz:
http://arxiv.org/abs/2410.23106
Autor:
Silva, Inês Oliveira e, Jesus, Sérgio, Ferreira, Hugo, Saleiro, Pedro, Sousa, Inês, Bizarro, Pedro, Soares, Carlos
Data used by automated decision-making systems, such as Machine Learning models, often reflects discriminatory behavior that occurred in the past. These biases in the training data are sometimes related to label noise, such as in COMPAS, where more A
Externí odkaz:
http://arxiv.org/abs/2410.06214
In this work we introduce an idempotent pressure to level-2 functions and its associated density entropy. All this is related to idempotent pressure functions which is the natural concept that corresponds to the meaning of probability in the level-2
Externí odkaz:
http://arxiv.org/abs/2409.19203
Autor:
Xiang, C., de Oliveira, E. R. Cardozo, Sandeep, S., Papatryfonos, K., Morassi, M., Gratiet, L. Le, Harouri, A., Sagnes, I., Lemaitre, A., Ortiz, O., Esmann, M., Lanzillotti-Kimura, N. D.
The generation of propagating acoustic waves is essential for telecommunication applications, quantum technologies, and sensing. Up to now, the electrical generation has been at the core of most implementations, but is technologically limited to a fe
Externí odkaz:
http://arxiv.org/abs/2407.06821
Sharp restriction theory and the finite field extension problem have both received a great deal of attention in the last two decades, but so far they have not intersected. In this paper, we initiate the study of sharp restriction theory on finite fie
Externí odkaz:
http://arxiv.org/abs/2405.16647
Autor:
Jesus, Sérgio, Saleiro, Pedro, Silva, Inês Oliveira e, Jorge, Beatriz M., Ribeiro, Rita P., Gama, João, Bizarro, Pedro, Ghani, Rayid
Aequitas Flow is an open-source framework and toolkit for end-to-end Fair Machine Learning (ML) experimentation, and benchmarking in Python. This package fills integration gaps that exist in other fair ML packages. In addition to the existing audit c
Externí odkaz:
http://arxiv.org/abs/2405.05809
Autor:
Lopes, A. O., Oliveira, E. R.
We will denote by $\mathcal{M}$ the space of Borel probabilities on the symbolic space $\Omega=\{1,2...,m\}^\mathbb{N}$. $\mathcal{M}$ is equipped Monge-Kantorovich metric. We consider here the push-forward map $\mathfrak{T}:\mathcal{M} \to \mathcal{
Externí odkaz:
http://arxiv.org/abs/2403.19566
Autor:
Domelevo, Komla, Durcik, Polona, Fragkiadaki, Valentia, Klein, Ohad, Silva, Diogo Oliveira e, Slavíková, Lenka, Wróbel, Błażej
The main result of this paper are dimension-free $L^p$ inequalities, $1
2,$ $\varepsilon>0,$ and $\theta=\theta(\varepsilon,p)\in (0,1)$ satisfying \[ \
Externí odkaz:
http://arxiv.org/abs/2401.07699
In this present paper, we first obtained some estimates involving parts of $\varepsilon$-regular mild solutions of the fractional integro-differential equation. In this sense, through these preliminary results, we investigate the main results of this
Externí odkaz:
http://arxiv.org/abs/2310.05977