Zobrazeno 1 - 10
of 45
pro vyhledávání: '"O. V. Besov"'
Autor:
O. V. Besov
Publikováno v:
Mathematical Notes. 113:18-26
Autor:
O. V. Besov
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 319:43-55
Autor:
O. V. Besov
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 312:91-103
Interpolation spaces are described for spaces of functions of positive smoothness on a domain $$G$$ of the Euclidean space $$\mathbb R^n$$ that satisfies the flexible cone condition. As a consequence, multiplicative estimates for the norms of functio
Autor:
O. V. Besov
Publikováno v:
Mathematical Notes. 108:492-498
Multiplicative estimates of the $$L_p$$ -norms of derivatives of a function on a domain with flexible cone condition are established.
Autor:
O. V. Besov
Publikováno v:
Doklady Mathematics. 101:86-89
Multiplicative estimates for the Lp-norms of derivatives on a domain with flexible cone condition are established.
Autor:
O. V. Besov
Publikováno v:
Mathematical Notes. 106:501-513
We establish an embedding theorem for spaces of functions of positive smoothness defined on irregular domains of n-dimensional Euclidean space in spaces of the same type and obtain some closely related results.
Autor:
O. V. Besov
Publikováno v:
Mathematical Notes. 104:799-809
Autor:
O. V. Besov
Publikováno v:
Doklady Mathematics. 97:236-239
For weighted spaces of functions of positive smoothness on irregular domains, embedding theorems into weighted Lebesgue spaces are proved.
Autor:
O. V. Besov
Publikováno v:
Mathematical Notes. 103:348-356
An embedding theorem of weighted spaces of functions of positive smoothness defined on irregular domains of n-dimensional Euclidean space in weighted Lebesgue spaces is established. The theorem is formulated depending on geometric parameters of the d
Autor:
O. V. Besov
Publikováno v:
Mathematical Notes. 101:608-618
The embedding of the Sobolev spaces W p s (ℝ n ) in a Lizorkin-type space of locally summable functions of zero smoothness is established. This result is extended to the case of the embedding of Sobolev spaces on nonregular domains of n-dimensional