Zobrazeno 1 - 7
of 7
pro vyhledávání: '"O. S. Babu"'
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 34, Iss 2, Pp 63-73 (2016)
By considering a $p-$valent Bazilevi\v{c} function in the open unit disk$\triangle$ which maps $\triangle$ onto the strip domain $w$ with$p\alpha < \Re\, w < p \beta,$ we estimate bounds of coefficients and solve Fekete-Szeg\"{o} problem forfunctions
Externí odkaz:
https://doaj.org/article/5fad3b5a45d64e4bb094cb2bf2df2745
Publikováno v:
Mathematical Sciences Letters. 5:49-58
In this paper, by applying a generalized extended fractional differintegral operator S λ;μ;η 0;z (z 2 4 ; p 2 N; μ;η 2 R; μ < p+ 1;−∞ < λ < η + p+ 1) we define a new class convex functions C V λ;μ;η p (α; A;B) and several sharp inclus
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 34, Iss 2, Pp 63-73 (2016)
By considering a $p-$valent Bazilevi\v{c} function in the open unit disk$\triangle$ which maps $\triangle$ onto the strip domain $w$ with$p\alpha < \Re\, w < p \beta,$ we estimate bounds of coefficients and solve Fekete-Szeg\"{o} problem forfunctions
Publikováno v:
Journal of Complex Analysis, Vol 2013 (2013)
Making use of fractional q-calculus operators, we introduce a new subclass ℳq(λ,γ,k) of starlike functions and determine the coefficient estimate, extreme points, closure theorem, and distortion bounds for functions in ℳq(λ,γ,k). Furthermore
Publikováno v:
International Journal of Pure and Apllied Mathematics. 102
In this paper, we introduce two new subclasses of the function classof bi-univalent functions defined in the open unit disc based on Hohlov Operator. Furthermore, we find estimates on the coefficients|a2| and |a3| for functions in these new subclasse
Publikováno v:
International Journal of Pure and Apllied Mathematics. 95
We estimate the bounds of coefficients and solve Fekete-Szego problem for p−valent Mocanu-convex and Pascu-type functions in the open unit disk △ which maps △ onto the strip domain w with p� < ℜw < p�.
Publikováno v:
Annales UMCS, Mathematica. 67
For functions of the form \[f(z) = z^{p} + \sum_{n = 1}^{\infty} a_{p + n} z^{p + n}\] we obtain sharp bounds for some coefficients functionals in certain subclasses of starlike functions. Certain applications of our main results are also given. In p