Zobrazeno 1 - 10
of 15
pro vyhledávání: '"O. O. Pokutnyi"'
Autor:
O. Z. Iskra, O. O. Pokutnyi
Publikováno v:
Journal of Mathematical Sciences. 272:228-235
Publikováno v:
Journal of Mathematical Sciences. 261:195-227
Publikováno v:
Ukrainian Mathematical Journal. 73:1009-1022
Publikováno v:
Ukrains’kyi Matematychnyi Zhurnal. 73:867-878
UDC 517.9 We investigate boundary value problems for the Lyapunov equation in the Hilbert space in the case where the corresponding problem is defined on an interval that depends on a parameter $\varepsilon$. We obtain necessary and sufficient condit
Autor:
D. Bihun, O. O. Pokutnyi
Publikováno v:
Journal of Mathematical Sciences. 254:179-200
Autor:
O. O. Pokutnyi
Publikováno v:
Journal of Mathematical Sciences. 249:647-660
We study boundary-value problem for the evolutionary Schrodinger equation and present a survey of the works in this field.
Autor:
O. O. Pokutnyi, E. V. Panasenko
Publikováno v:
Journal of Mathematical Sciences. 246:394-409
We study boundary-value problems for a Lyapunov-type equation in the space Lp.(I, ℒ(ℋ)): Necessary and sufficient conditions for the solvability of the corresponding boundary-value problem are established both in linear and nonlinear cases. The s
Autor:
O. O. Pokutnyi, O. A. Boichuk
Publikováno v:
Ukrainian Mathematical Journal. 71:869-882
We study bounded solutions of a nonlinear Lyapunov-type problem in Banach and Hilbert spaces. Necessary and sufficient conditions for the existence of bounded solutions on the entire axis are obtained under the assumption that the homogeneous equatio
Autor:
O. O. Pokutnyi, E. V. Panasenko
Publikováno v:
Journal of Mathematical Sciences. 236:313-332
We establish sufficient conditions for the bifurcation of solutions of the boundary-value problems for the Lyapunov equation in Hilbert spaces. The cases where the generating equation has or does not have solutions are analyzed. As an example, we con
Publikováno v:
Ukrainian Mathematical Journal. 70:5-29
We study the problems of existence and representations of the solutions bounded on the entire axis for both linear and nonlinear differential equations with unbounded operator coefficients in the Frechet and Banach spaces under the condition of expon