Zobrazeno 1 - 10
of 82
pro vyhledávání: '"O. M. Fomenko"'
Publikováno v:
Кубанский научный медицинский вестник, Vol 25, Iss 1, Pp 111-116 (2018)
Aim. The aim of our work was to study characteristics and results of surgical treatment of patients with wounds and cicatricial deformities who underwent tube flaps grafting.Materials and methods. The analysis of the treatment of 15 patients aged 9 t
Externí odkaz:
https://doaj.org/article/5af34689d9a24be3833e1d2c26fb4cae
Publikováno v:
Кубанский научный медицинский вестник, Vol 0, Iss 5, Pp 63-68 (2017)
Aim. The aim of our work was to study the results of surgical treatment of patients with the temporary pedicle flaps grafting in the recovery of shed skin cover.Materials and methods. 97 cases of the flaps use for the treatment of 92 patients aged fr
Externí odkaz:
https://doaj.org/article/0dd790fa29584ef4b6ba70845db90275
Autor:
O. M. Fomenko
Publikováno v:
Journal of Mathematical Sciences. 234:750-757
Let r4(n) denote the number of representations of n as a sum of four squares. The generating function ζ4(s) is Epstein’s zeta function. The paper considers the Riesz mean $$ {D}_{\rho}\left(x;{\zeta}_4\right)=\frac{1}{\Gamma \left(\rho +1\right)}\
Autor:
O. M. Fomenko
Publikováno v:
Journal of Mathematical Sciences. 234:737-749
Let rk(n) denote the number of lattice points on a k-dimensional sphere of radius $$ \sqrt{n} $$ . The generating function $$ {\zeta}_k(s)=\sum \limits_{n=1}^{\infty }{r}_k(n){n}^{-s},\kern0.5em k\ge 2, $$ is Epstein’s zeta function. The paper cons
Autor:
O. M. Fomenko
Publikováno v:
Journal of Mathematical Sciences. 225:1012-1021
Let Pk(n) be the difference between the number of points of the integer lattice contained in the ball $$ {y}_1^2+\cdots {y}_k^2\le n $$ and the volume of this ball. The paper investigates the asymptotic behavior of the sums $$ \sum_{n\le x}{P}_k(n)\k
Autor:
O. M. Fomenko
Publikováno v:
Journal of Mathematical Sciences. 222:690-702
Autor:
O. M. Fomenko
Publikováno v:
Journal of Mathematical Sciences. 217:125-137
Let Kn be a number field of degree n over ℚ. By D(x,Kn) denote the number of all nonzero integral ideals in Kn with norm ≤ x. The Dedekind zeta function ζKn(s) is a meromorphic function with a simple pole at s = 1 and with residue, say, Λn. Def
Autor:
O. M. Fomenko
Publikováno v:
Journal of Mathematical Sciences. 207:934-939
Let K be a number field of degree n over ℚ and let d, h, and R be the absolute values of the discriminant, class number, and regulator of K, respectively. It is known that if K contains no quadratic subfield, then $$ h\;R\gg \frac{d^{1/2}}{ \log d}
Autor:
O. M. Fomenko
Publikováno v:
Journal of Mathematical Sciences. 207:923-933
Autor:
O. M. Fomenko
Publikováno v:
Journal of Mathematical Sciences. 200:624-631
Let Kn be a number field of degree n over Q. By $$ {A}_{K_n}(x) $$ denote the number of integral ideals with norm ≤ x. Landau’s classical estimate is $$ {A}_{K_n}(x)={\varLambda}_n x+ O\left({x}^{\left( n-1\right)/\left( n+1\right)}\right). $$ In