Zobrazeno 1 - 10
of 33
pro vyhledávání: '"O. K. Sheinman"'
Autor:
Iskander A. Taimanov, Nikita Nekrasov, Petr Georgievich Grinevich, O. K. Sheinman, Sergey Novikov, M. A. Olshanetsky, A. N. Varchenko, Leonid Chekhov, S. Yu. Dobrokhotov, Semen Bensionovich Shlosman, Andrei Marshakov, Andrei Mironov, Aleksandr Petrovich Veselov, Michael Anatol'evich Tsfasman, Viktor M Buchstaber, A. K. Pogrebkov, S. M. Grushevsky, Anton Zabrodin, A. Yu. Okounkov
Publikováno v:
Russian Mathematical Surveys. 76:733-743
Autor:
O. K. Sheinman
Publikováno v:
Banach Center Publications. 123:111-122
We present the correspondence between Lax integrable systems with spectral parameter on a Riemann surface, and Conformal Field Theories, in quite general set-up suggested earlier by the author. This correspondence turns out to give a prequantization
Autor:
O. K. Sheinman, P. I. Borisova
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 311:22-35
We describe a class of spectral curves and find explicit formulas for the Darboux coordinates of Hitchin systems corresponding to classical simple groups on hyperelliptic curves. We consider in detail the systems with rank $$2$$ groups on genus $$2$$
Publikováno v:
Trudy Matematicheskogo Instituta imeni V.A. Steklova. 311:27-40
Дано описание класса спектральных кривых и найдены явные формулы для координат Дарбу систем Хитчина для классических простых групп на
Autor:
O. K. Sheinman
Publikováno v:
Doklady Mathematics. 102:524-527
Given an integrable system defined by a Lax representation with spectral parameter on a Riemann surface, we construct a unitary projective representation of the corresponding Lie algebra of Hamiltonian vector fields by means of operators of covariant
Autor:
I. Kh. Sabitov, Nikolay Dolbilin, A. N. Parshin, Sergey Novikov, V S Makarov, Dmitri Orlov, Victor Matveevich Buchstaber, A. Yu. Vesnin, Dmitry Treschev, N. Yu. Erokhovets, Mikhail Kovalev, V. A. Alexandrov, O. K. Sheinman, Evgeny Vital'evich Shchepin, Lev D. Beklemishev, Alexander A. Gaifullin
Publikováno v:
Russian Mathematical Surveys. 74:1159-1162
Autor:
O. K. Sheinman
Publikováno v:
Functional Analysis and Its Applications. 53:291-303
A description of the class of spectral curves, and explicit formulas for algebraic-geometric action-angle coordinates are obtained for the Hitchin systems on hyperelliptic curves, for any complex simple Lie algebra of the types $A_l$, $B_l$, $C_l$.
Autor:
O. K. Sheinman
Publikováno v:
Функциональный анализ и его приложения. 53:63-78
В работе дается описание класса спектральных кривых и явные формулы для координат Дарбу систем Хитчина типов $A_l$, $B_l$, $C_l$ на гиперэллипт
Autor:
Evgeny Vital'evich Shchepin, Vitalii Sergeevich Makarov, A. N. Parshin, Dmitrii Valer'evich Treschev, Mikhail Kovalev, Nikolai P. Dolbilin, Dmitri Orlov, Sergei Petrovich Novikov, Victor Matveevich Buchstaber, Andrei Yurievich Vesnin, Victor Alexandrov, O. K. Sheinman, Idzhad Khakovich Sabitov, Alexander A. Gaifullin, Lev D. Beklemishev, Nikolai Yur'evich Erokhovets, Михаил Дмитриевич Ковалeв
Publikováno v:
Uspekhi Matematicheskikh Nauk. 74:194-197
Autor:
O. K. Sheinman
Publikováno v:
Doklady Mathematics. 97:144-146
Certain reductions of Hitchin systems of rank 2 and genera 2 and 3 are considered, which are shown to give integrable systems of two (respectively, three) interacting points on the line. It is shown that the reduced systems are particular cases of an