Zobrazeno 1 - 10
of 33
pro vyhledávání: '"O. Coquand"'
Autor:
Matthias Sperl, O. Coquand
Publikováno v:
Physical review. E. 104(1-1)
The Granular Integration Through Transients (GITT) formalism gives a theoretical description of the rheology of moderately dense granular flows and suspensions. In this work, we extend the GITT equations beyond the case of simple shear flows studied
Autor:
D. Mouhanna, O. Coquand
Publikováno v:
Phys.Rev.E
Phys.Rev.E, 2021, 103, pp.031001. ⟨10.1103/PhysRevE.103.L031001⟩
Phys.Rev.E, 2021, 103, pp.031001. ⟨10.1103/PhysRevE.103.L031001⟩
One investigates the flat phase of quenched disordered polymerized membranes by means of a two-loop, weak-coupling computation performed near their upper critical dimension $D_{uc} = 4$, generalizing the one-loop computation of Morse, Lubensky and Gr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1a5adfdc22a2bf1f457a3c466a8fcf70
http://arxiv.org/abs/2011.01550
http://arxiv.org/abs/2011.01550
This work generalizes the granular integration through transients formalism introduced by Kranz et al. [Phys. Rev. Lett. 121, 148002 (2018)] to the determination of the pressure. We focus on the Bagnold regime and provide theoretical support to the e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0cd25d6864c3ca25aef4e79eb7187d2b
https://doi.org/10.1103/physreve.102.032602
https://doi.org/10.1103/physreve.102.032602
Publikováno v:
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2020, 101 (6), pp.062104. ⟨10.1103/PhysRevE.101.062104⟩
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2020, 101 (6), pp.062104. ⟨10.1103/PhysRevE.101.062104⟩
We investigate two complementary field-theoretical models describing the flat phase of polymerized - phantom - membranes by means of a two-loop, weak-coupling, perturbative approach performed near the upper critical dimension $D_{uc}=4$, extending th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5080c5265ed40610cf05c23a06b09713
https://doi.org/10.1103/physreve.101.062104
https://doi.org/10.1103/physreve.101.062104
Publikováno v:
Physical Review E
Physical Review E, American Physical Society (APS), 2020, 101 (4), ⟨10.1103/PhysRevE.101.042602⟩
Physical Review E, American Physical Society (APS), 2020, 101 (4), ⟨10.1103/PhysRevE.101.042602⟩
The wrinkling transition experimentally identified by Mutz et al. [Phys. Rev. Lett. 67, 923 (1991)] and then thoroughly studied by Chaieb et al. [Phys. Rev. Lett. 96, 078101 (2006)] in partially polymerized lipid membranes is reconsidered. One shows
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f69b117b6a4602efabc85d30fb2c7eae
https://doi.org/10.1103/physreve.101.042602
https://doi.org/10.1103/physreve.101.042602
Autor:
O. Coquand, Matthias Sperl
Publikováno v:
The Journal of chemical physics. 152(12)
In a companion paper, we derived analytical expressions for the structure factor of the square-shoulder potential in a perturbative way around the high- and low-temperature regimes. Here, various physical properties of these solutions are derived. In
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
O. Coquand, Matthias Sperl
We investigate the spatial structure of dense square-shoulder fluids. To this end we derive analytical perturbative solutions of the Ornstein-Zernike equation in the low- and high-temperature limits as expansions around the known hard sphere solution
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::791ae5a49aafabe99bbafa904ad187ab
http://arxiv.org/abs/1912.06574
http://arxiv.org/abs/1912.06574
Autor:
O. Coquand
Publikováno v:
Phys.Rev.B
Phys.Rev.B, 2019, 100 (12), pp.125406. ⟨10.1103/PhysRevB.100.125406⟩
Phys.Rev.B, 2019, 100 (12), pp.125406. ⟨10.1103/PhysRevB.100.125406⟩
Crystalline membranes are one of the rare examples of bidimensional systems in which long-range order can stabilise an ordered phase in the thermodynamic limit. By a careful analysis of the Goldstone modes counting, we propose a symmetry breaking mec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3666798f9026159376e45849e73e0674
Publikováno v:
Phys.Rev.E
Phys.Rev.E, 2018, 97 (3), pp.030102. 〈10.1103/PhysRevE.97.030102〉
Phys.Rev.E, 2018, 97 (3), pp.030102. ⟨10.1103/PhysRevE.97.030102⟩
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2018, 97 (3), pp.030102. ⟨10.1103/PhysRevE.97.030102⟩
Phys.Rev.E, 2018, 97 (3), pp.030102. 〈10.1103/PhysRevE.97.030102〉
Phys.Rev.E, 2018, 97 (3), pp.030102. ⟨10.1103/PhysRevE.97.030102⟩
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2018, 97 (3), pp.030102. ⟨10.1103/PhysRevE.97.030102⟩
We investigate the flat phase of $D$-dimensional crystalline membranes embedded in a $d$-dimensional space and submitted to both metric and curvature quenched disorders using a nonperturbative renormalization group approach. We identify a second-orde