Zobrazeno 1 - 10
of 434
pro vyhledávání: '"O. Bénichou"'
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-7 (2024)
Abstract The Kramers escape problem is a paradigmatic model for the kinetics of rare events, which are usually characterized by Arrhenius law. So far, analytical approaches have failed to capture the kinetics of rare events in the important case of n
Externí odkaz:
https://doaj.org/article/604f8c8fa8354a29bf0c5e56f621f455
Publikováno v:
Nature Communications, Vol 13, Iss 1, Pp 1-7 (2022)
The persistence of random walker can quantify the kinetics of transport limited reactions and predict the time to reach a target, but is challenging for non-stationary random processes with a large number of degrees of freedom. The authors introduce
Externí odkaz:
https://doaj.org/article/6c111fb61fd9445c80749e474f2bc2ef
Publikováno v:
Nature Communications, Vol 10, Iss 1, Pp 1-7 (2019)
The survival probability of a random walker is the probability that a particular target has not been reached by time t. Here the authors produce a formula for the prefactor involved in the expression of the survival probability which is shown to hold
Externí odkaz:
https://doaj.org/article/9aeb6d8782ee4b6ea00fd7c23c234714
Publikováno v:
Physical Review X, Vol 12, Iss 1, p 011052 (2022)
Self-interacting random walks are endowed with long-range memory effects that emerge from the interaction of the random walker at time t with the territory that it has visited at earlier times t^{′}
Externí odkaz:
https://doaj.org/article/08825d7c70814f3c99a4723fea183220
Publikováno v:
Physical Review Research, Vol 2, Iss 1, p 012057 (2020)
How much time does it take for a fluctuating system, such as a polymer chain, to reach a target configuration that is rarely visited—typically because of a high energy cost? This question generally amounts to the determination of the first-passage
Externí odkaz:
https://doaj.org/article/32497dfb515e46679016b257d1f65708
Publikováno v:
Physical Review E. 107
First-passage properties of continuous stochastic processes confined in a 1--dimensional interval are well described. However, for jump processes (discrete random walks), the characterization of the corresponding observables remains elusive, despite
Publikováno v:
Physical Review E. 107
We consider the kinetics of the imperfect narrow escape problem, i.e. the time it takes for a particle diffusing in a confined medium of generic shape to reach and to be adsorbed by a small, imperfectly reactive patch embedded in the boundary of the
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Physical Review Letters. 129
We derive a universal, exact asymptotic form of the splitting probability for symmetric continuous jump processes, which quantifies the probability π_{0,[under x]_}(x_{0}) that the process crosses x before 0 starting from a given position x_{0}∈[0