Zobrazeno 1 - 10
of 230
pro vyhledávání: '"O., Parasyuk"'
Autor:
R. M. Kushnir, I. O. Lukovs’kyi, V. L. Makarov, V. O. Marchenko, L. A. Pastur, M. O. Perestyuk, O. M. Tymokha, Ye. Ya. Khruslov, O. A. Boichuk, V. Ya. Gutlyanskii, A. N. Kochubei, A. G. Nikitin, M. I. Portenko, I. O. Parasyuk, R. I. Petryshyn, M. I. Ronto, V. I. Tkachenko, S. I. Trofymchuk
Publikováno v:
Ukrains’kyi Matematychnyi Zhurnal. 75:3-6
Autor:
I. O. Parasyuk, L. V. Protsak
Publikováno v:
Journal of Mathematical Sciences. 263:248-257
Autor:
I. O. Parasyuk
Publikováno v:
Journal of Mathematical Sciences. 240:323-341
We consider a natural Lagrangian system that describes the motion of a solid body under the action of superposition of two potential force fields. The first field is a stationary field with quadratic potential, while the potential of the second field
Autor:
B. V. Repeta, I. O. Parasyuk
Publikováno v:
Journal of Mathematical Sciences. 222:312-335
We present additional information on the dynamics of a fast-slow system with dynamic bifurcation of multifrequency oscillations. It is shown that, parallel with an asymptotically stable invariant torus, the system also possesses hyperbolic invariant
Publikováno v:
Ukrainian Journal of Physical Optics. 2016, Vol. 17 Issue 4, p141-147. 7p.
Autor:
I. O. Parasyuk
Publikováno v:
Ukrainian Mathematical Journal. 66:1553-1574
The paper deals with a quasiperiodically excited natural Lagrangian system on a Riemannian manifold. We find sufficient conditions under which this system has a weak Besicovitch quasiperiodic solution minimizing the averaged Lagrangian. It is proved
Autor:
V. A. Lahoda, I. O. Parasyuk
Publikováno v:
Ukrainian Mathematical Journal. 65:114-131
We consider a nonlinear system on the direct product $ {{\mathbb{R}}^m}\times {{\mathbb{R}}^n} $ . For this system, under the conditions of indefinite coercivity and indefinite monotonicity, we establish the existence of a bounded Lipschitz invariant
Autor:
I. O. Parasyuk, Yu. E. Vakal
Publikováno v:
Ukrainian Mathematical Journal. 64:525-554
UDC 517.9 The Arnold method for the detection of fixed points of symplectic diffeomorphisms is used to establish lower estimates for the number of ultrasubharmonics in a Hamiltonian system on a two-dimensional symplectic manifold with an almost auton
Publikováno v:
Ukrainian Mathematical Journal. 64:408-432
We consider a nonlinear system in the direct product of a torus and a Euclidean space. For this system, under the conditions of indefinite coercivity and indefinite monotonicity, we establish the existence of a Lipschitz invariant section.
Autor:
I. O. Parasyuk, Yu. E. Vakal
Publikováno v:
Nonlinear Oscillations. 14:149-186
UDC 517.9 We consider a two-dimensional autonomous Hamiltonian system with heteroclinic contour under the action of a time-periodic perturbation. It is shown that the number of ultrasubharmonics in the perturbed system is estimated from below by a fu